期刊文献+

复合Poisson模型中“双界限”分红问题 被引量:1

Compound Poisson risk model with double-threshold dividend strategy
下载PDF
导出
摘要 引入了复合Poisson模型中的"双界限"分红模型,在这种模型中,当盈余超过上限时分红以不超过保费率的速率付出,低于下限后保费率增大.文中利用Gerber- Shiu函数来分析这种模型,先导出了Gerber-Shiu函数m_1,m_2,m_3满足的积分-微分方程,再给出m_1,m_2,m_3的解析表示,最后通过几步把Gerber-Shiu函数m(u;b_1,b)的解析式表示出来. In this paper,the classical compound Poisson risk model with a double-threshold dividend strategy is considered.Under such a strategy,when the surplus is above the upper barrier, dividends are paid at a constant rate that does not exceed the premium rate,and the premium rate increases if the surplus falls below the lower barrier.Three integro-differential equations for the Gerber- Shiu discounted penalty function are derived,and analytical expressions for the Gerber-Shiu discounted penalty function m_1,m_2 ...
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2008年第4期379-388,共10页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(10771119) 教育部科技重点项目(206091)
关键词 复合Poisson模型 THRESHOLD strategy模型 GERBER-SHIU函数 积分-微分方程 更新方程 compound Poisson risk model threshold dividend strategy Gerber-Shiu discounted penalty function integro-differential equation renewal equation
  • 相关文献

参考文献6

  • 1Yin Chuancun.Discussion of"On optimal dividend strategies in the compound Poisson model,by H U Gerber and Elias S W Shiu"[].North American Archaeologist.2006
  • 2Lin Sheldon X,,Willmot G E.Analysis of a defective renewal equation arising in ruin the- ory[].Insurance Mathematics Economics.1999
  • 3X.Sheldon Lin,Gordon E.Willmot,Steve Drekic.The classical risk model with a constant dividend barrier:analysis of the Gerber -Shiu discounted penalty function[].Insurance Mathematics Economics.2003
  • 4Lin Sheldon X,Pavlova P.The compound poisson risk model with a threshold dividend strategy[].Insurance: Mathematics and Economics.2006
  • 5Gerber H U,Elias S W Shiu.On the time value of ruin[].NorthAmerican Actuarial Journal.1998
  • 6H. U. Gerber,E.S.W. Shiu.On optimal dividend strategies in the compound Poisson model[].North American Archaeologist.2006

同被引文献12

  • 1De F B. Su Un' impostazione Ahernativa dell Teoria Colletiva delRischio [ J ] Transactions of the XV International Congress of Actuaries, 1957,2:433 -443.
  • 2Janssen J, Reinhard J. Probabiliti6s de ruine pour une class de mode1es de risqu6 semi - Markoviens [ J ]. ASTIN Bulletin, 1985, 15(2) :123 -134.
  • 3Albreeher H, Boxma O. On the discounted penalty function in a Markov - dependent risk model [ J ]. Insurance Mathematies and Eeonomics ,2004,35 ( 2 ) :245 - 254.
  • 4Gerber H. An introduction to mathematical risk theory [ M ]. Philadelphia : Huebner Foundation Monograph Series 8,1979.
  • 5Asmussen S. Ruin probabilities [ M ]. Singapore : World Scientitc,2000.
  • 6Gerber H. On the probability of ruin in the presence of a linear dividend barrier[ J ]. Scandinavian Actuarial Journal, 1981 ( 4 ) : 105 -115.
  • 7Lu Y,Li S M. On the probability of nlin in a Markov - modulated risk model[ J ]. Insurance Mathematics and Economics, 2005,37 (2) :522 -532.
  • 8Li S M, Lu Y. Moments of the dividend payments and related problems in a Markov- modulated risk model[ J ]. North American Actuarial Journal ,2007,2 ( 3 ) :65 - 76.
  • 9Dickson D C M, Waters H R. Some optimal dividends problems [ J ]. Astin Bulletin,2004,34:49 - 74.
  • 10周明,郭军义.CLASSICAL RISK MODEL WITH THRESHOLD DIVIDEND STRATEGY[J].Acta Mathematica Scientia,2008,28(2):355-362. 被引量:6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部