期刊文献+

基于角域对数导数意义下区域的单叶性内径 被引量:3

The inner radius of univalence in the sense of pre-Schwarzian derivative based on angular domain
下载PDF
导出
摘要 研究对数导数意义下区域的单叶性内径.以角域为基础,给出对数导数意义下区域的单叶性内径下界的两个公式.借助Becker和Pommerenke给出的在右半平面的非单叶函数,获得对数导数意义下区域的单叶性内径上界估计.最后给出关于椭圆的拟共形反射. The inner radius of univalence of domains in the sense of pre-Schwarzian derivative was studied.Two general formulas for the lower bound of inner radius in the sense of pre-Schwarzian derivative based on angular domain were established.By means of one holomorphic non-univalent function given by Becker and Pommerenke,one formula for the upper bound of the inner radius was obtained.The quasiconformal reflection for the ellipse was given at the end.
出处 《深圳大学学报(理工版)》 CAS 北大核心 2008年第4期437-440,共4页 Journal of Shenzhen University(Science and Engineering)
基金 国家自然科学基金资助项目(10371078) 广东省自然科学基金资助项目(04009797)
关键词 万有TEICHMÜLLER空间 对数导数 单叶性内径 拟共形反射 Poincaèr度量 universal Teichmüller space pre-Schwarzian derivative inner radius of univalence quasiconformal reflection
  • 相关文献

参考文献8

  • 1程涛,陈纪修.区域的对数导数单叶性内径[J].中国科学(A辑),2007,37(4):504-512. 被引量:9
  • 2[1]Nehari Z.The schwarzian derivative and schlicht function[J].Bull Amer Math Soc,1949,55:545-551.
  • 3[2]Ahlfors L V.Sufficient condition for quasiconformal exten-sion[J].Ann of Math Studies,1974,79:23-29.
  • 4[3]Becker J.Loewner equation and qusiconformal mapping[J].J Reine Angew Math,1972,255:23-43(in German).
  • 5[4]Becker J,Pommerenker Ch.The inner radius of univalence and Jordan curve[J].J Reine Angew Math,1984,354:74-94 (in German).
  • 6[5]Zhuravlev I V.Model of the universal Teichmüller space[J].Sib Math J,1986,27:75-82.
  • 7CHENJIXIU],WEIHANBAI.SOME GEOMETRIC PROPERTIES ON A MODEL OF UNIVERSAL TEICHMLLER SPACES[J].Chinese Annals of Mathematics,Series B,1997,18(3):309-314. 被引量:12
  • 8[7]CHENG Tao,CHEN Ji-xiu,On the inner radius of univalence by pre-Schwarzian derivative[J].Science of China,2007,37(4):504-512(in Chinese).

二级参考文献1

共引文献19

同被引文献10

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部