摘要
研究对数导数意义下区域的单叶性内径.以角域为基础,给出对数导数意义下区域的单叶性内径下界的两个公式.借助Becker和Pommerenke给出的在右半平面的非单叶函数,获得对数导数意义下区域的单叶性内径上界估计.最后给出关于椭圆的拟共形反射.
The inner radius of univalence of domains in the sense of pre-Schwarzian derivative was studied.Two general formulas for the lower bound of inner radius in the sense of pre-Schwarzian derivative based on angular domain were established.By means of one holomorphic non-univalent function given by Becker and Pommerenke,one formula for the upper bound of the inner radius was obtained.The quasiconformal reflection for the ellipse was given at the end.
出处
《深圳大学学报(理工版)》
CAS
北大核心
2008年第4期437-440,共4页
Journal of Shenzhen University(Science and Engineering)
基金
国家自然科学基金资助项目(10371078)
广东省自然科学基金资助项目(04009797)