期刊文献+

非线性方程组的逆Broyden秩1拟Newton方法及其在MATLAB中的实现 被引量:10

Single rank inverse Broyden quasi Newton method and its realization in MATLAB for nonlinear equations
原文传递
导出
摘要 对于非线性方程组F(x)=0,Newton迭代公式x(k+1)=x(k)-[F′(x(k))]-1F(x(k))(k=0,1,2,…)的最大优点在于其形式简单且是超线性收敛的,而最大的缺点在于对初值依赖性强且每一次迭代均需要计算Jacobi矩阵及其逆矩阵,计算量大,易导致误差累积传播.通过对Newton迭代公式的逐步改进,展现了逆Broy-den秩1拟Newton方法的形成过程,并以一具体例子,实现该方法在MATLAB7.5环境中的数值求解过程. For the nonlinear equations F(x)=0,the advantages of Newton iteration formulation x(k+1)=x(k)-[F′(x(k))]-1F(x(k))(k=0,1,2,…) lie in its simple form and superlinear convergence,while the disadvantages include its strong dependence on initial value,requiring calculation Jacobian matrix and its inverse matrix to realize each alternation,and the large amount of calculation easily lead to accumulate and spread errors.Through the improving to Newton iterative formula step by step,the forming process of single ran...
作者 王斌
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第S2期144-148,共5页 Journal of Yunnan University(Natural Sciences Edition)
关键词 非线性方程组 逆Broyden秩1拟Newton方法 MATLAB 超线性收敛 nonlinear equations single rank inverse Broyden quasi Newton method MATLAB superlinear convergence.
  • 相关文献

参考文献2

二级参考文献13

  • 1冯果忱.非线性方程组的数值解法[M].上海科学技术出版社,1989..
  • 2Golub G H, Van Loan C F. Matrix Computations[M]. Johns Hopkins University Press, 1996.
  • 3Heng-Bin An and Zhong-Zhi Bai, Directional secant method for nonlinear equations, J.Comp. Appl, Math., (2004).
  • 4A. Ben-Israel, A Newton-Raphon method for the solution of systems of equations, J. Math.Anal. Appl., 15(1966), 243-252.
  • 5A. Ben-Israel, Newton's method with modified functions, Contemp. Math., 204(1997), 39-50.
  • 6J.E. Dennis, Jr., On the convergence of Broyden's method for nonlinear systems of equations, Math. Comp., 25(1971), 559-567.
  • 7J.E. Dennis, Jr. and J.J. More, Quasi-Newton methods, motivation and theory, SIAM Rev., 19(1977), 46-89.
  • 8J.E. Dennis, Jr. and R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983.
  • 9冯果忱,非线性方程组的迭代解法,上海科学技术出版社,上海,1989.
  • 10Y. Levin and A. Ben-Israel, Directional Newton method in n variables, Math. Comp.,71(2001), 251-262.

共引文献6

同被引文献94

引证文献10

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部