期刊文献+

融合多可视化特征的可通行性地形分类 被引量:1

Traversability classification based on multi-visual features fusion
原文传递
导出
摘要 针对基于单一特征进行可通行性地形分类效果差的问题,提出了一种融合多可视化特征的地形分类算法.首先通过实验选出了分类效果较好的YIQ颜色空间并在此空间提取颜色特征,然后引入一种新的能量定义方法对离散余弦变换(DCT)纹理特征提取法加以改进,由实验得出改进的DCT纹理特征及小波(Coiflets-4)纹理特征可取得较好的分类效果.将上面3种特征加以融合并用主成分分析法(PCA)进行降维处理,利用高斯混合模型(GMM)作为分类器,在由VisTex标准数据库所生成的马赛克图像和真实的野外环境图像中进行实验,结果令人满意. A terrain classification method based on multi-visual features fusion was proposed,which improves the poor performance of classification method based on single feature.First,YIQ color feature which can get better classification performance in the experiment was chosen to compute the color feature.Second,texture feature extraction method based on discrete cosine transform(DCT) was improved by introducing a new energy define method.In the experiment texture features based on the improved discrete cosine trans...
作者 韩光 赵春霞
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第S1期105-108,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家高技术研究发展计划资助项目(2006AA04Z238)
关键词 智能机器人 可通行性分类 多可视化特征 高斯混合模型 intelligent robot traversability classification multi-visual features Gaussian mixture model
  • 相关文献

参考文献2

  • 1林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 2R. Manduchi,A. Castano,A. Talukder,L. Matthies. Obstacle Detection and Terrain Classification for Autonomous Off-Road Navigation[J] 2005,Autonomous Robots(1):81~102

二级参考文献10

共引文献321

同被引文献10

  • 1刘大学,戴斌,李政,贺汉根.一种单线激光雷达和可见光摄像机的标定方法[J].华中科技大学学报(自然科学版),2008,36(S1):68-71. 被引量:15
  • 2李旭涛,彭复员,曹汉强,朱光喜.地形表面的自相似程度与分类感知[J].电子与信息学报,2007,29(6):1480-1482. 被引量:2
  • 3Huang J,Lee A,Mumford D.Statistics of range images[A].Proceedings of the Computer Vision and Pattern Recognition[C].Los Alamitos,CA,United States:IEEE,2000:1324-1331.
  • 4Macedo J,Manduchi R,Matthies L.Ladar-based discrimination of grass from obstacle for autonomous navigation[A].Proceedings of International Symposium on Experimental Robotics[C].London,UK:Springer Verlag,2000:111-120.
  • 5Castano A,Matthies L.Foliage discimination using a rotating ladar[A].Proceedings of IEEE International Conference on Robotics and Automation[C].Los Alamitos,CA,United States:IEEE,2003:1-6.
  • 6Wellington C,Stentz A.Learning prediction of the load-bearing surface for autonomous rough-terrain navigation in vegetation[A].International Conference on Field and Service Robotics[C].Los Alamitos,CA,United States:IEEE,2003:49-54.
  • 7Vandapel N,Huber D,Kapuria A,et al.Natural terrain classification using 3-D ladar data[A].IEEE International Conference on Robotics and Automation[C].Los Alamitos,CA,United States:IEEE,2004:5117-5122.
  • 8Sithole G,Vosselman G.ISPRS comparison of filters[R].Delft,Netherland:Netherlands Commission III Working Group 3,Delft University of Technology,2003:1-29.
  • 9Yuan Xia,Guo Ling,Wang Jian yu,et al.Efficient K-nearest neighbors searching algorithms for unorganized cloud points[A].The 7th World Congress on Intelligent Control and Automation[C].Chongqing,China:Institute of Electrical and Electronics Engineers Inc,2008:8507-8510.
  • 10王琤,胡鹏,刘晓航,李云翔.基于数字地形分析的火星地貌自动化分类方法[J].武汉大学学报(信息科学版),2009,34(4):483-487. 被引量:3

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部