期刊文献+

斑块环境下具有Holling-2的捕食-食饵系统的持久性 被引量:4

Persistence for a Holling-2 Predator-Prey System with Stage-Structure in a Two-Patch Environment
下载PDF
导出
摘要 研究了2个斑块环境下食饵具有阶段结构、捕食者之间具有扩散、带有Holling-2的捕食-食饵模型.基于此系统解的正性和有界性结果、利用比较原理得到了系统一致持久性所满足的初始条件. A Holling-2 predator-prey model with stage structure in two-patch environment is investigated.Based on the positivity and the boundedness of the solution for the system,the uniform persistence of the solution for the system with initial conditions is proved by the principle of comparison.
出处 《甘肃科学学报》 2008年第4期5-8,共4页 Journal of Gansu Sciences
基金 甘肃省自然科学基金(3ZS062-B25-019)
关键词 阶段结构 持久性 比较原理 stage structure persistence principle of comparison
  • 相关文献

参考文献7

  • 1[1]W G Aiello and H I Freedman.A Time-Delay Model of Single Species Growth with Stage Structure[J].Appl.Math.Biosci.1990,101:139-153.
  • 2[2]R Xu.M A J Chaplain,F A Davidson.Global Stability of a Stage-structured Predator-prey Model with Prey Dispersal[J].Appl.Math.Comput.2005,171:293-314.
  • 3[3]R Xu,M A J Chaplain,F A Davidson.Persistence and Global Stability of a Ratio-dependent Predator-prey Model with Stage Structured[J].AppL Math.Comput.2004,158,729-744.
  • 4[4]R Xu,M A J Chaplain,F A Davidson.Persistence and Periodic-ity of a Delayed Ratio-dependent Predator-prey Model with Stage Structured and Prey Dispersal[J].Appl.Math.Comput.2004,159:823-846.
  • 5李平.一类捕食—食饵模型的研究[J].甘肃科学学报,1999,11(2):73-75. 被引量:2
  • 6黑利军.一类具有时滞和密度制约的捕食模型稳定性[J].甘肃科学学报,1999,11(3):56-58. 被引量:5
  • 7[9]X Zhang,L Chen.X Chen.Persistence and Global Stability for Two-speeies Nonautonomous Competition Lotka-volterra with Time Delay[J].Nonlinear Anal.TMA,1999,37.

二级参考文献3

共引文献4

同被引文献27

  • 1Xu Rui Feng Hanying Yang Pinghua Wang ZhiqiangDept. of Math.,Mechanical Engineering College,Shijiazhuang 050003..PERSISTENCE AND STABILITY IN A RATIO-DEPENDENT FOOD-CHAIN SYSTEM WITH TIME DELAYS[J].Applied Mathematics(A Journal of Chinese Universities),2002,17(1):39-47. 被引量:1
  • 2刚毅,雒志学.一类具功能反应和密度制约的捕食系统的定性分析[J].兰州交通大学学报,2006,25(3):151-153. 被引量:4
  • 3金志龙.周期环境下具有年龄结构种群动力系统的最优控制[J].兰州理工大学学报,2007,33(2):161-163. 被引量:1
  • 4AIELLO W G,FREEDMAN H I.A time-delay model of single species growth with Stage structure[J].Appl Math Biosci,1990,101:139-153.
  • 5XU R,CHAPLAIN M A J,DAVIDSON F A.Global stability of a stage-structured Predator-prey model with prey dispersal[J].Appl Math Comput,2005,171:293-314.
  • 6XU R,CHAPLAIN M A J,DAVIDSON F A.Persistence and global stability of a ratio-dependent Predator-prey model with stage structured[J].Appl Math Comput,2004,158:729-744.
  • 7XU R,CHAPLAIN M A J,DAVIDSON F A.Persistence and periodicity of a delayed ratio-dependent Predator-prey model with stage structured and prey dispersal[J].Appl Math Comput,2004,159:823-846.
  • 8KUANG Y.Delay differential equations with applications in population Dynamics[M].New York:Academic Press,1993.
  • 9Dean A M. A Simple Model of Mutualism[J]. Am Natural, 1987,121 : 409-417.
  • 10Graves W G,Peckham B,Pastor J. A Bifurcation Analysis of a Differential Equations Model for Mutualism[J]. Bulletin of Mathematical Biology,2006,68: 1 851-1 872.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部