期刊文献+

域Q(a^(1/s))上方程f(x)=0的Galois群

The Galois Group of f(x)=0 Based on Q(a^(1/s))
下载PDF
导出
摘要 重点讨论Q(a~(1/s))域上的方程f(x)=0的Galois群的计算.给出并且证明了命题:域Q(a~(1/s))上f(x)=0的Galois群是f(x)=0在Q上的Galois群的子群,特别如果f(x)不含xS-a的因子,即f(x)的系数中没有sa的某个组合,则f(x)在Q(a~(1/s))的Galois群与f(x)在Q上的Galois群等同.并用具体实例来展示命题的实际意义. The emphasis is laid on the root finding of function f(x)=0 over Q(a^(1/s)).The given proposition:Galois group of f(x)=0 over Q(a^(1/s)) is a sub-group of Galois group over Q.Particularly,if xs-a is not a factor of f(x),i.e.coefficients of f(x) are not in the form of combination of sa,then Galois groups of f(x) over Q and Q(a^(1/s)) are identical.Examples are given to show the practical meaning of the given proposition.
出处 《甘肃科学学报》 2008年第4期13-15,共3页 Journal of Gansu Sciences
关键词 GALOIS群 可解群 Galois方程 域Q(a^(1/s)) Galois group resolvable group Galois function field Q(a^(1/s))
  • 相关文献

参考文献2

二级参考文献4

  • 1郝炳新.域论基础[M].北京:北京师范大学出版社,1988..
  • 2R Reams. A Galois approach to m-th roots of matrices with rational entries, [J]. Linear Algebra Appl. 1997,258:187-194.
  • 3S Lang. Alegebra[M]. Addison-wesley, Menlo Park, Calif. 1984.
  • 4R Cow, Construction of som wreath products as Galois groups of normal real extension of the rationals[J].Number Theory. 1986,24: 360-372.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部