期刊文献+

Ky Fan点的一种推广

A GENERALIZATION OF KY FAN'S POINT
下载PDF
导出
摘要 基于次Ky Fan点的概念,给出了不具任何连续性条件的函数次Ky In this paper,the notion of secondary Ky Fan s point is established,and the existence of secondary Ky Fan s point for functions with no continuty was given.
机构地区 贵州大学
出处 《贵州科学》 2008年第3期9-11,33,共4页 Guizhou Science
关键词 上(下)半连续 拟凸(凹) 次Ky Fan点 Upper(Lower) Semi-continuous quasi-convex(concave) function secondary Ky Fan s point.
  • 相关文献

参考文献14

  • 1[1]K Fan A m in im ax inequality and applications[M].New York Acad in ic Press,1972
  • 2[3]X Z Yuan,Knaster Kuratow ski Mazurk iewica theoram,Ky Fan m in im ax inequalities and fixed point theorem[J].Nonlin World 1995,2:131-169
  • 3[4]J P Aubin Dynanic Econimic Theorey A viability approach[M].Berlin:Sprhger Verlag 1997
  • 4[5]K Fan.Some p roperties of convex sets related to fixed point theorems[J].Math Ann 1984,266:519-537
  • 5[6]G Q Tian,JX Zhou Quasi-variation hequalities w ith non-compact sets[J] JM ath A nal Appl,1991,160.583-595
  • 6[7]G Q Tian,JX Zhou Transfer continuities generalizations of theW eierstrass andmaxintum theorrms a full characterization[J].J M ath Econom,1995,24:281-303
  • 7[8]J X Zhou,G Q T ian.Trans fer method for charactering the existence of m axm al elem ents of binary rehtions on oanpact or noncompact sets[J].SIAM J O ptim,1992,2(3):360-375
  • 8[9]C Horvath,J V L linares C iscar M aximal Elem en ts and fixed poht for binary rehtions on topobgical order spaces[J].J M ath Econan,1996 25:291-306
  • 9[10]C Horvath.some resu lts on m u ltivalued mappings and inequalities w ith out convexity,Nonlinear and Convex A nalysis[M],new York M areel Dekker,1987
  • 10[11]C H orvath.Contractibity and generalized convexity[J].JM alh Appl 1991,156:341-357

二级参考文献12

  • 1K Fan.A minimax inequality and its applications[M].New York:Acadimic Press,1972.103-113.
  • 2J X Zhou,G Q Tian.Transfer method for charactering the existence of maxmal elements of binary relations on compact or noncompact sets[J].SIAM J Optim,1992,2(3):360-375.
  • 3C Horvath.Some results on multivalued mappings and inequalities without convexity,Nonlinear and Convex Analysis[M].New York:Marcel Dekker,1987.96-106.
  • 4C Horvath.Contractibity and generalized convexity[J].J Math Anal Appl,1991,156:341-357.
  • 5C Horvath,J V Llinares Ciscar.Maximal Elements and fixed point for binary relations on topological order Spaces[J].J Math Econom,1996,25:291-306.
  • 6S S Chang,X Wu,S W Xiang.A topological KKM theorem and minimax theorems[J].J Math Anal Appl,1994,182:156-161.
  • 7D Kinderlehrer,G Stampacchia.An introduction to variational inequalities and their application[M].New York:Acadimic Press,1980.
  • 8X Z Yuan.Knaster-Kuratowski-Mazurkiewica theorem,Ky Fan minimax inequalities and fixed point theorems[J].Nonlin World,1995,2:131-169.
  • 9J P Aubin.Dynamic Econimic Theorey,A viability approach[M].Berlin:Springer-Verlag,1997.437-452.
  • 10K Fan.Some properties of convex sets related to fixed point theorems[J].Math Ann,1984,266:519-537.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部