Ky Fan点的一种推广
A GENERALIZATION OF KY FAN'S POINT
摘要
基于次Ky Fan点的概念,给出了不具任何连续性条件的函数次Ky
In this paper,the notion of secondary Ky Fan s point is established,and the existence of secondary Ky Fan s point for functions with no continuty was given.
出处
《贵州科学》
2008年第3期9-11,33,共4页
Guizhou Science
关键词
上(下)半连续
拟凸(凹)
次Ky
Fan点
Upper(Lower) Semi-continuous
quasi-convex(concave) function
secondary Ky Fan s point.
参考文献14
-
1[1]K Fan A m in im ax inequality and applications[M].New York Acad in ic Press,1972
-
2[3]X Z Yuan,Knaster Kuratow ski Mazurk iewica theoram,Ky Fan m in im ax inequalities and fixed point theorem[J].Nonlin World 1995,2:131-169
-
3[4]J P Aubin Dynanic Econimic Theorey A viability approach[M].Berlin:Sprhger Verlag 1997
-
4[5]K Fan.Some p roperties of convex sets related to fixed point theorems[J].Math Ann 1984,266:519-537
-
5[6]G Q Tian,JX Zhou Quasi-variation hequalities w ith non-compact sets[J] JM ath A nal Appl,1991,160.583-595
-
6[7]G Q Tian,JX Zhou Transfer continuities generalizations of theW eierstrass andmaxintum theorrms a full characterization[J].J M ath Econom,1995,24:281-303
-
7[8]J X Zhou,G Q T ian.Trans fer method for charactering the existence of m axm al elem ents of binary rehtions on oanpact or noncompact sets[J].SIAM J O ptim,1992,2(3):360-375
-
8[9]C Horvath,J V L linares C iscar M aximal Elem en ts and fixed poht for binary rehtions on topobgical order spaces[J].J M ath Econan,1996 25:291-306
-
9[10]C Horvath.some resu lts on m u ltivalued mappings and inequalities w ith out convexity,Nonlinear and Convex A nalysis[M],new York M areel Dekker,1987
-
10[11]C H orvath.Contractibity and generalized convexity[J].JM alh Appl 1991,156:341-357
二级参考文献12
-
1K Fan.A minimax inequality and its applications[M].New York:Acadimic Press,1972.103-113.
-
2J X Zhou,G Q Tian.Transfer method for charactering the existence of maxmal elements of binary relations on compact or noncompact sets[J].SIAM J Optim,1992,2(3):360-375.
-
3C Horvath.Some results on multivalued mappings and inequalities without convexity,Nonlinear and Convex Analysis[M].New York:Marcel Dekker,1987.96-106.
-
4C Horvath.Contractibity and generalized convexity[J].J Math Anal Appl,1991,156:341-357.
-
5C Horvath,J V Llinares Ciscar.Maximal Elements and fixed point for binary relations on topological order Spaces[J].J Math Econom,1996,25:291-306.
-
6S S Chang,X Wu,S W Xiang.A topological KKM theorem and minimax theorems[J].J Math Anal Appl,1994,182:156-161.
-
7D Kinderlehrer,G Stampacchia.An introduction to variational inequalities and their application[M].New York:Acadimic Press,1980.
-
8X Z Yuan.Knaster-Kuratowski-Mazurkiewica theorem,Ky Fan minimax inequalities and fixed point theorems[J].Nonlin World,1995,2:131-169.
-
9J P Aubin.Dynamic Econimic Theorey,A viability approach[M].Berlin:Springer-Verlag,1997.437-452.
-
10K Fan.Some properties of convex sets related to fixed point theorems[J].Math Ann,1984,266:519-537.
共引文献4
-
1舒振武,向淑文.次Ky Fan点的存在性[J].贵州大学学报(自然科学版),2008,25(3):233-235.
-
2陈源.广义弱Fan Ky点的存在性[J].衡阳师范学院学报,2009,30(6):7-8. 被引量:1
-
3陈源,胡伯霞.广义向量平衡问题的存在性定理[J].衡阳师范学院学报,2010,31(6):9-11.
-
4陈静,杨剑锋.Ky Fan极大极小不等式定理的推广[J].贵阳学院学报(自然科学版),2011,6(2):15-17.
-
1舒振武,向淑文.次Ky Fan点的存在性[J].贵州大学学报(自然科学版),2008,25(3):233-235.
-
2俞建.自反Banach空间中Ky Fan点的存在性[J].应用数学学报,2008,31(1):126-131. 被引量:4
-
3俞建,罗群.Ky Fan点集的本质连通区[J].应用数学学报,2000,23(2):294-298. 被引量:11
-
4陆学勇,向淑文,吉丽超.关于鞍点集的几何特征[J].贵州大学学报(自然科学版),2007,24(4):331-334.
-
5张广,邬冬华,高静.弱伪连续向量值函数及其在多目标博弈中的应用[J].运筹学学报,2015,19(1):92-98. 被引量:2
-
6吴定平.Browder不动点定理的推广及其对极大极小问题和社会经济平衡问题等的应用[J].宜宾学院学报,1996(2):1-12.
-
7白玉娟.凸模糊数值函数的判定定理[J].陇东学院学报,2011,22(2):19-21. 被引量:2
-
8倪大平,陈宝娟.多值函数的上(下)半连续性和连续性[J].华北水利水电学院学报,1993(3):55-58.
-
9周志昂.强G-预不变凸函数的充分性条件[J].西南大学学报(自然科学版),2012,34(5):13-17. 被引量:2
-
10范丽亚,刘三阳.带有单模糊映射的混合变分不等式[J].苏州科技学院学报(自然科学版),2003,20(3):1-6.