期刊文献+

生物学中反应扩散方程的分歧分析(英文) 被引量:2

Bifurcation analysis of reaction-diffusion equations in developmental biology
下载PDF
导出
摘要 应用Liapunov-Schmidt方法研究了一类生物学中的非线性反应扩散方程,在分歧点附近,得到了从平凡解分歧出来的非平凡解的近似解析表达式,并与数值解作了比较,结果表明方法是正确的。 Using the Liapunov-Schmidt reduction, we investigate the bifurcation of a class of nonlinear reaction-diffusion equations in developmental biology. Near the bifurcation point we obtain nontrivial solution branches bifurcated from the trivial solution. Approximate analytical expressions of the nontrivial solutions are given to compare with the numerical solutions of the nonlinear problem.
出处 《上海师范大学学报(自然科学版)》 2004年第2期7-12,共6页 Journal of Shanghai Normal University(Natural Sciences)
基金 Supported by the Special Funds for Major Specialities of Shanghai Education Committee(No.00JC14057) Shanghai Development Foundation for Science and Technology(No.03QA14036).
关键词 反应扩散方程 分歧 Liapunov-Schmidt约化 reaction-diffusion equations bifurcation Liapunov-Schmidit reduction
  • 相关文献

参考文献4

  • 1CHOW S N,HALE J K.Methods of bifurcation theory[M].New York:Springer-Verlag,1982.
  • 2GOLUBITSKY M,SCHAEFFER D G.Singularities and groups in bifurcation theory[M].New York:Springer-Verlag,1985.
  • 3LI C P,CHEN G.Bifurcations of one-dimensional reaction-diffusion equations[J].Int J Bifurcation and Chaos,2001,11(5):1295-1306.
  • 4MURRAY J D.Mathematical Biology(Second Edition)[M].New York:Springer-Verlag,1991.

同被引文献9

  • 1王明新.生物学中一个反应扩散方程组正平衡解的存在唯一性[J].科学通报,1994,39(3):197-200. 被引量:5
  • 2Murray J D. Mathematical biology(second edition). New York: Springer-Verlag, 1991.
  • 3Keller H B. Lectures on numerical methods in bifurcation problems. New York: Springer Verlag, 1987.
  • 4Eilbeck J C and Furter J E. Understanding steady-state bifurcation diagrams for a model reaction-diffusion system. Continuation and Bifurcations: Numer. Tech. Appl., 1990, 25-41.
  • 5Khibnik A I, Kuznetsov Y A , Levitin V V and Nikolaev E N. Continuation techniques and interactive software for bifurcation analysis of ODEs and iterated maps. Physica D, 1993, 62: 360-371.
  • 6Kubicek M and Marek M. Computational methods in bifurcation theory and dissipative struc- tures. New York: Springer-Verlag, 1983.
  • 7Seydel R. Practical bifurcation and stability analysis. New York: Springer-Verlag,1994.
  • 8Keller H B. On Numerical methods in bifurcation problems. Berlin: Springer, 1987.
  • 9马本堃.化学反应扩散方程的微观推导[J].北京师范大学学报(自然科学版),1982,18(3):55-64. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部