摘要
假设F是区域D■C的亚纯函数族,又设k是一个正整数,a,b(≠a),c(≠a)是3个有限复数且h1,h2,h3是3个正数.若对每个函数f∈F有f(z)=a■|f(k)(z)|≤h1,f(z)=b■f(k)(z)|≤h2,f(k)(z)=c■|f(z)|≥h3,且f所有的零点的重级不小于k,则F在D内正规.
Let F be a family of meromorphic functions in a domain D■C,all of whose zeros are of multiplicity at least k.Let k be a positive integer,and let a,b and c be three finite complex numbers such that a≠b,a≠c and h1,h2,h3 be three positive numbers.If f(z)=a ■|f(k)(z)|≤h1,f(z)=b ■ |f(k)(z)|≤h2,f(k)(z) =c■|f(z)|≥h3 for every f∈F,and all f s zeros are of multiplicity at least k,then F is normal in D.
出处
《吉首大学学报(自然科学版)》
CAS
2009年第1期13-16,共4页
Journal of Jishou University(Natural Sciences Edition)
基金
Supported by the NSF of Hunan Province(06C417)
关键词
亚纯函数
正规性
meromorphic function
normality