期刊文献+

基于粗糙集和贝叶斯理论的IT项目风险规则分析

A method of risk rule mining in IT project based on rough set and Bayes theory
下载PDF
导出
摘要 针对IT项目的风险决策过程中存在大量不确定、不完全信息等特征,在传统粗糙集的基础上,将贝叶斯理论引入到IT项目的风险规则中,提出了规则支持度、置信因子、覆盖因子等获取的相关算法,构建了基于粗糙集与贝叶斯理论相结合的风险规则模型,并通过实例对该模型进行了详细分析. According to the imprecision and uncertainty of risk factors,the Beyes theory is introduced into IT project risk management based on the traditional rough set theory in this paper,then the concept and algorithm such as rules support degree,confidence factor,covering factor are proposed,and the risk decision rule mining model based on the combination of rough set and Beyes theory is constructed.At last,an example is introduced to demonstrate the method and model above detailed.
作者 赵莹 张颖
出处 《沈阳工程学院学报(自然科学版)》 2009年第1期73-76,共4页 Journal of Shenyang Institute of Engineering:Natural Science
基金 辽宁省自然科学基金资助项目(20042029)
关键词 规则分析 IT项目 粗糙集 贝叶斯理论 rule mining IT project rough set Bayes theory
  • 相关文献

参考文献6

二级参考文献47

  • 1彭宁云,文习山,王一,陈江波,柴旭峥.基于线性分类器的充油变压器潜伏性故障诊断方法[J].中国电机工程学报,2004,24(6):147-151. 被引量:35
  • 2莫娟,王雪,董明,严璋.基于粗糙集理论的电力变压器故障诊断方法[J].中国电机工程学报,2004,24(7):162-167. 被引量:85
  • 3王双成,苑森淼,王辉.基于类约束的贝叶斯网络分类器学习[J].小型微型计算机系统,2004,25(6):968-971. 被引量:30
  • 4Ramoni M, Sebastiami P. Robust bayes classifiers[J]. Artificial Intelligence, 2001, 125(1-2): 209-226.
  • 5Friedman N, Geiger D, Goldszmidt M. Bayesian network classifiers[J]. Machine Learning, 1997, 29: 131-161.
  • 6Pearl J. Probabilistic reasoning in intelligent systems[M]. San Francisco, CA: Morgan Kaufmann, 1988, 117-133.
  • 7Heckerman D, Geiger D, Chickering D M. Learning Bayesian networks: the combination of knowledge and statistical data[J]. Machine Learning, 1995,20:197-243.
  • 8Wang F, Liu DY, Xue WX, et al. Research on learning Bayesian network structure with hidden variables based on genetic algorthms[J]. Chinese Journal Electron, 2002, 11(3): 297-302.
  • 9Neil M, Fenton N, Nielsen L. Building large-scale bayesian networks[J]. The Knowledge Engineering Review, 2000, 15(3):257-284.
  • 10Cheng J, Greiner R, Kelly J, et al. Learning Bayesian networks from data: An information-theory based approach[J]. Artificial Intelligence, 2002, 137, (1-2): 43-90.

共引文献141

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部