期刊文献+

基于边聚集系数的社区结构发现算法 被引量:10

Community structure discovery algorithm based on edge clustering coefficient
下载PDF
导出
摘要 将超图模型以及基于此的聚类算法应用到社区结构发现的领域。对于简单图的社区结构发现,引入边聚集系数的概念,提出了基于边聚集系数的社区发现算法。将安然邮件数据集作为测试数据集,通过算法对比分析,证明该算法在时间复杂度上可以提高一个数量级。 This paper applied the hypergraph based model and cluster algorithm in community structure discovery.Introduced the concept of edge clustering coefficient(ECC) to community structure discovery of simple graph and proposed an algorithm of community discovery based on ECC.Enron e-mail data sets will be a test data sets,through comparative analysis of algorithm,to prove that this algorithm can significantly improve the time complexity.
作者 胡健 杨炳儒
出处 《计算机应用研究》 CSCD 北大核心 2009年第3期858-859,共2页 Application Research of Computers
基金 国家自然科学基金资助项目(60675030)
关键词 边聚集系数 社区结构 社区发现 edge clustering coefficient community structure community discovery
  • 相关文献

参考文献1

  • 1F. Wu,B. A. Huberman. Finding communities in linear time: a physics approach[J] 2004,The European Physical Journal B(2):331~338

同被引文献59

  • 1雷震,吴玲达,雷蕾,黄炎焱.初始化类中心的增量K均值法及其在新闻事件探测中的应用[J].情报学报,2006,25(3):289-295. 被引量:25
  • 2James Allan, Jaime Carbonen, George Doddington, Jonathan Yamron, Yiming Yang. Topic Detection and Tracking Pilot Study: Final Report, In Proceedings of the DARPA Broadcast News Transcription and Understanding Workshop [ M]. San Fran- cisco, CA, 1998, Morgan Kaufmann Publishers, Inc. :194-218.
  • 3Zhongfeng Zhang, Qiudan Li. QuestionHolic: Hot Topic Dis-covery and Trend Analysis in Community Question Answering Systems [ J ]. Expert Systems with Applications, 2011,38 (6) : 6848 -6855.
  • 4Chuanming Yu, Xiaoqing Zhang, Huiting Luo. Mining Hot Topics from Free - Text Customer Reviews - - An LDA - Based Approach[ C]. 2010 Seventh Web Information Systems and Ap- plications Conference, 2010 : 85-89.
  • 5Nan Li, Desheng Dash Wu. Using Text Mining and Sentiment Analysis for Online Forums Hotspot Detection and Forecast [ J]. Decision Support Systems, 2010(48 ) : 354 - 368.
  • 6Zhang Li, Liu Yun. Network Structures and User Behavior Anal- ysis Based Hot Topic Detection for Internet Forum[ J ]. Journal of Internet Technology. 2008, 9( 3 ) :267-272.
  • 7Michelle Girvan, M E J Newman. Community Structure in So- cial and Biological Networks [ J ]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99 (12) : 7821-7826.
  • 8Feng Li, Timon C Du. Who is Talking? An Ontology-based O- pinion Leader Identification Framework for Word- of-mouth Marketing in Online Social Blogs [ J ]. Decision Support Sys- tems,2011, 51 ( 1 ) :190-197.
  • 9FORTUNATO S. Community detection in graphs[ J]. Physics Reports, 2010,486 (3- 5 ) :75-174.
  • 10NEWMAN M E J. The structure and function of complex networks [J]. SIAM Rev,2003,45(2) :167-256.

引证文献10

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部