期刊文献+

基于敏感属性值泄露个数期望的匿名模型

Anonymity model based on expectation of sensitive attribute value
下载PDF
导出
摘要 当前K-匿名成为解决隐私保护的重要模型,但其不能解决同质攻击造成的属性泄露。对K-匿名模型进行了扩展,提出一种新的基于敏感属性值泄露个数期望的匿名模型,该模型能很好地解决属性泄露问题,同时通过实验证明了该模型的可行性。 K-Anonymity is an important model in the area of privacy protection,however,it is useless for the attribute disclosure made by the homogeneity attack.This paper extended a new model based on expectation of sensitive attribute value,which could deal with the attribute disclosure well.And it is also showed to be feasible by experiments.
出处 《计算机应用研究》 CSCD 北大核心 2009年第3期1109-1111,共3页 Application Research of Computers
关键词 K-匿名 隐私保护 匿名化 期望 K-anonymity privacy preservation anonymilization expectation
  • 相关文献

参考文献2

二级参考文献29

  • 1SWEENEY L.Achieving k-anonymity privacy protection using generalization and suppression[J].International Journal on Uncertainty,Fuzziness and Knowledge-based Systems,2002,10(5):571-588.
  • 2FUNG B,WANG K,YU P.Top-down specialization for information and privacy preservation[C]// Proceedings of the 21st IEEE International Conference on Data Engineering.Washington DC:IEEE Computer Society,2005:205-216.
  • 3WANG K,YU P,CHAKRABORTY S.Bottom-up generalization:a data mining solution to privacy protection[C]// Proceedings of the Fourth IEEE International Conference on Data Mining (ICDM'04).Washington DC:IEEE Computer Society,2004:249-256.
  • 4LeFEVRE K,DeWITT D J,RAMAKRISHNAN R.Incognito:efficient full-domain k-anonymity[C]// Proceedings of the 2005 ACM SIGMOD international conference on Management of data.New York:ACM Press,2005:49-60.
  • 5AGGARWAL G,FEDER T,KENTHAPADI K,et al.Anonymizing Tables[C]// Proceedings of ICDT,LNCS 3363.Heidelberg:Springer Berlin,2005:246-258.
  • 6BAYARDO R,AGRAWAL R.Data privacy through optimal k-anonymization[C]// Proceedings of the 21st International Conference on Data Engineering (ICDE'05).Washington DC:IEEE Computer Society,2005:217-228.
  • 7AGGARWAL G,FEDER T,KENTHAPADI K,et al.Achieving anonymity via clustering[C]// Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems.New York:ACM Press,2006:153-162.
  • 8BYUN J-W,KAMRA A,BERTINO E,et al.Efficient k-anonymization using clustering techniques[C]// Proceedings of Database Systems for Advanced Applications (DASFAA 2007),LNCS 4443.Berlin:Springer-Verlag,2007:188-200.
  • 9LeFEVRE K,DeWITT D,RAMAKRISHNAN R.Mondrian multidimensional k-anonymity[C]// Proceedings of the 22nd International Conference on Data Engineering (ICDE'06).Washington DC:IEEE Computer Society,2006:25.
  • 10XIAO X,TAO Y.Anatomy:simple and effective privacy preservation[C]// Proceedings of the 32nd international conference on Very large data bases.VLDB Endowment,2006:139-150.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部