期刊文献+

基于多阈值PCNN的运动目标检测算法 被引量:2

Moving object detection algorithm based on multi-threshold for PCNN
下载PDF
导出
摘要 在经典的基于混合高斯模型减背景算法的基础上,在脉冲耦合神经网络(PCNN)对前景和背景的分割过程中,运用了多阈值思想,其迭代次数由简化的最大熵准则决定,并且提出了一种新的模型学习率。经过实验证明,该算法在检测能力、抑制噪声、稳定性等方面得到了较好的改进。 Motion detection has a wide range of applications in many artificial intelligence implementations.An improved motion detection algorithm was proposed.Gaussian mixture model of classical algorithm was used,and background and foreground were classified by using Pulse Couple Neural Network(PCNN).PCNN was modified,multi-threshold was adopted to detect object and simple maximum entropy rule was applied to end iteration.Also,a new learning rate was proposed in the model updating stage.Experimental results show th...
出处 《计算机应用》 CSCD 北大核心 2009年第3期739-741,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目(60572011) 教育部新世纪优秀人才支持计划项目(NCET-06-0900) 甘肃省自然科学基金资助项目(0710RJZA015)
关键词 运动目标检测 脉冲耦合神经网络 多阈值 简化最大熵 学习率 motion detection Pulse Couple Neural Network(PCNN) multi-threshold simple maximum entropy learning rate
  • 相关文献

参考文献1

二级参考文献11

  • 1刘洁,张东来.关于自适应高斯混合背景模型的更新算法的研究[J].微计算机信息,2006(08S):241-242. 被引量:23
  • 2代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 3GRIMSON W,STAUFFER C,ROMANO R.Using adaptive tracking to classify and monitor activities in a site[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington,DC:IEEE Computer Society,1998:22-31.
  • 4STAUFFER C,GRIMSON W.Adaptive background mixture models for real time tracking[C]// Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition.Fort Collins:IEEE Press,1999,2:246-252.
  • 5STAUFFER C,GRIMSON W.Learning patterns of activity using real-time tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):747-757.
  • 6KAEWTRAKULPONG P,BOWDEN R.An improved adaptive background mixture model for real-time tracking with shadow detection[C]// The 2nd European Workshop on Advanced Video-based Surveillance Systems.Kingston:Kluwer Academic Publishers,2001:149-158.
  • 7POWER P W,SCHOONEES J A.Understanding background mixture models for foregrounds segmentation[C]// Proceedings of Image and Vision Computing.New Zealand:Auckland,2002:267-271.
  • 8LEE D S,HULL J,ERPL B.A Bayesian framework for Gaussian mixture background modeling[C]// Proceedings of IEEE International Conference on Image Processing.New York:IEEE Press,2003:973-976.
  • 9GAO X,BOULT T,COETZEE F.Error analysis of background adaption[C]// Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition.USA:IEEE Press,2000:503-510.
  • 10CUCCHIARA R,GRANA C,PICCARDI M,et al.Improving shadow suppression in moving object detection with HSV color Information[C]// Proceedings of IEEE Intelligent Transportation Systems Conference,Oakland:IEEE Press,2001:334-339.

共引文献38

同被引文献16

  • 1黄志勇,孙光民,李芳.基于RGB视觉模型的交通标志分割[J].微电子学与计算机,2004,21(10):147-148. 被引量:40
  • 2罗晓萍,蒋加伏,唐贤瑛.基于SVM和模糊免疫网络的交通标志图像识别[J].计算机工程与设计,2006,27(9):1542-1544. 被引量:5
  • 3李宁,陈彬.实用交通标志自动识别方法[J].上海师范大学学报(自然科学版),2006,35(5):53-59. 被引量:8
  • 4初秀民,严新平,毛喆,章先阵.高速公路场景图像的二值化及交通标志定位检测方法[J].中国公路学报,2006,19(6):102-106. 被引量:12
  • 5Caulfield, H. John,Kinser, Jason M.Finding the shortest path in the shortest time using PCNN’s[].IEEE Transactions on Neural Networks.1999
  • 6Kuntimad, G.,Ranganath, H.S.Perfect image segmentation using pulse coupled neural networks[].IEEE Transactions on Neural Networks.1999
  • 7Yu, Bo,Zhang, Liming.Pulse-coupled neural networks for contour and motion matchings[].IEEE Transactions on Neural Networks;Temporal Coding for Neural Information Processing.2004
  • 8Vasconcelos, Nuno,Lippman, Andrew.Empirical Bayesian motion segmentation[].IEEE Transactions on Pattern Analysis and Machine Intelligence.2001
  • 9Eckhorn R,Reitboeck HJ,Arndt M,et al.Feature linking via synchronization among distributed assemblies: simulation of results form cat visual cortex[].Neural Computation.1990
  • 10B. Due,P. Schroeter,J. Bigtin.Motion Segmentation by Fuzzy Clustering with Au-tomatic Determination of the ber of Motions[].Proceedings of ICPR.1996

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部