期刊文献+

基于不完全朴素贝叶斯分类模型的垃圾邮件分类模型 被引量:3

Anti-spam model based on semi-Naive Bayesian classification model
下载PDF
导出
摘要 由于朴素贝叶斯分类模型的简单高效,在垃圾邮件分类时可以达到较好的效果;但朴素贝叶斯的条件独立假设割裂了属性之间的关系,影响了分类的准确性。放松朴素贝叶斯分类模型关于属性之间条件独立假设,介绍一种新的基于不完全朴素贝叶斯分类模型的垃圾邮件分类模型,N平均1-依赖邮件过滤模型。使用N个1-依赖分类模型的平均概率作为分类的预测概率。实验证明,该模型在简单、高效的同时降低了对垃圾邮件分类的错误率。 Because Naive Bayes(NB) classification model is simple and effective,good efficiency can be achieved in anti-spam applications.On the other hand,the assumption of its attribute independence makes it unable to express its semantic dependence.This paper proposed a new anti-spam classification model based on semi-NB classification model,averaged on N one-dependence classification model.It relaxed the assumption of condition independence of each attribute.It was assumed that all attributes were dependent on one...
作者 惠孛 吴跃
出处 《计算机应用》 CSCD 北大核心 2009年第3期903-904,907,共3页 journal of Computer Applications
基金 国家863计划项目(2007AA01Z443) 华为软件技术有限公司高校合作项目(YBIN2007243)
关键词 贝叶斯分类 不完全朴素贝叶斯 垃圾邮件 Bayesian classification semi-Naive Bayes spam
  • 相关文献

参考文献1

  • 1Nir Friedman,Dan Geiger,Moises Goldszmidt. Bayesian Network Classifiers[J] 1997,Machine Learning(2-3):131~163

同被引文献33

  • 1中国互联网协会反垃圾邮件工作委员会.2010年第四季度中国反垃圾邮件状况调查报告[EB/OL].[2010-12-01].http://www.anti-spam.cn/.
  • 2CARRERAS X, MRQUEZ L. Boosting trees for anti-spam email fil- tering [ C] // Proceedings of the 4th International Conference on Re- cent Advances in Natural Language Processing. Washington, DC: IEEE Computer Society, 2001:58-64.
  • 3GLYMIN M, ZIARKO W. Rough set approach to spam filter learn- ing [ C]// Proceedings of International Conference on Rough Sets and Intelligent Systems Paradigms. Washington, DC: IEEE Com- puter Society, 2007:350 -359.
  • 4THIAGO S, WALMIR M C. A review of machine learning approa- ches to spam filtering [ J]. Expert Systems with Applications, 2009, 36(7) : 10206 - 10222.
  • 5CHEN X L, LIU P Y, ZHU Z F. A method of spam fihering basedon weighted support vector machines [ C]//Proceedings of the Sec- ond IEEE International Symposium on IT in Medicine and Educa- tion. Washington, DC: IEEE Computer Society, 2009:947-950.
  • 6DONG D, ZHANG J. A spam filter system based on P2P architec- ture [ C]/! Proceedings of International Conference on Networking, Architecture and Storage. Washington, DC: IEEE Computer Socie- ty, 2008:155 - 156.
  • 7LI Z, SHEN H. SOAP: a social network aided personalized and ef- fective spam filter to clean your E-mail box [ C]//Proceedings of the 32nd IEEE International Conference on Computer Communications. Washington, DC: IEEE Computer Society, 2011:1835-1843.
  • 8KONG J, REZAEI B. Collaborative spare filtering using E-mail networks [J]. IEEE Computer, 2006, 12(1): 67-73.
  • 9SIRIVIANOS M, KIM K, YANG X. SocialFilter: introducing so- cial trust to collaborative spare mitigation [ C]//Proceedings of the 32nd IEEE International Conference on Computer Communica- tions. Washington, DC: IEEE Computer Society, 2011: 2300- 2308.
  • 10中国教育和科研计算机网紧急响应组.中文邮件样本集[EB/OL].[2011-01-15].http://www.ceert.edu.cn/spam/sa/datasets.htm.

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部