期刊文献+

一种适合ECC的三级流水模乘加单元设计 被引量:2

Design of a 3-stage Pipelined Modular Multiplication and Addition Unit for ECC
下载PDF
导出
摘要 大数模乘和模加/减是椭圆曲线密码学(Elliptic Curve Cryptography,ECC)中的基本运算.通过分析改进的Montgomery模乘算法,把模乘运算划分成3个阶段映射到3级流水线电路中,并在不影响模乘运算效率的情况下添加少量的硬件资源到流水线的第3个阶段,得到了一个模乘加单元(Modular Multiplication and Addition Unit,MMAU).和Crow等人给出的包含4个模操作ALU的模运算处理器相比,三级流水的MMAU节省了50%的资源,同时吞吐量提高了6%. Large integer modular multiplication and modular addition/subtraction are basic operations in Elliptic Curve Cryptography(ECC).In this paper,we present a Modular Multiplication and Addition Unit(MMAU)by partitioning an improved Montgomery Modular Multiplication(MMM)algorithm into 3 independent parts,mapping it to a 3-stage pipelined circuit,and adding a small amount of hardware resource to the third stage of the pipeline for modular addition/abstraction without affecting the performance of MMM.Compared to m...
出处 《微电子学与计算机》 CSCD 北大核心 2009年第2期122-126,共5页 Microelectronics & Computer
基金 中国科学院研究生院课题项目(06JT079J01)
关键词 椭圆曲线密码学 流水线技术 MONTGOMERY算法 模加/减 elliptic curve cryptography(ECC) pipelining technique Montgomery algorithm modular addition/subtraction
  • 相关文献

参考文献6

  • 1Sakiyama K,Mentens N,Batina L,et al.Reconfigurable modular arithmetic logic unit for high-performance public-key cryptosystems[].Int’l Workshop Applied Recon-figurable ComputingARC.2006
  • 2Nadia Nedjah,Luiza de Macedo Mourelle.Three hardware architectures for the binary modular exponentiation:se-quential,parallel and systolic[].IEEE TransCircuits and Systems.2005
  • 3IEEE Standard Specifications for Public-Key Cryptography. IEEE Std 1363-2000 . 2000
  • 4Montgomery P L.Modular multiplication without trial division[].Mathematics of Computation.1985
  • 5PARHAMI B.Computer arithmetic:algorithms and hardwaredesigns[]..2000
  • 6Crowe F,Daly A,Marnane W.A scalable dual mode arithmetic unit for public key cryptosystems[].Information Technology: Coding and Computing ITCC International Conference on.2005

同被引文献17

  • 1刘强,马芳珍,佟冬,程旭.基于新型脉动阵列的RSA密码处理器[J].北京大学学报(自然科学版),2005,41(3):495-500. 被引量:2
  • 2毛天然,李树国.一种用于ECC密码体制的模乘器设计[J].微电子学,2006,36(3):344-346. 被引量:1
  • 3赵忠民,林正浩.一种改进的Wallace树型乘法器的设计[J].电子设计应用,2006(8):113-116. 被引量:12
  • 4McIvor C, McLoone M, McCanny J V. A High-Speed Low Latency RSA Decryption Silicon Core [ C ]//Proceeding of the 2003 IEEE Int Symp C irc and Syst. New York : IEEE Press, 2003,4 : 133 - 136.
  • 5Sakiyama K, Mentens N, Batina L. Reconfigurable Module Arithmetic Logic Unit for High-Performance Public-Key Cryptosystems [ J ]. Int' 1 Workshop Applied Reconfigurable Computing,2006,56 ( 9 ) :34-7-357.
  • 6谈飞洋.高速ECC算法协处理器的设计[D].西安:西安电子科技大学,2009,42-45.
  • 7Montgomery P L. Modular Multiplication ithout Trialdivision [ J ]. Mathematics of Computation,1985,44(170) :519-521.
  • 8Manzoul M A. Parallel CLA Algorithm for Fast Addition[ C]//Proc Intl Par Comput EE Conf. New York:IEEE Press,2000:55-58.
  • 9Seidel P M,McFearin L,Matula D W. Binary Multiplication Radix -32 and Radix-256[ C]//15th IEEE Symposium on Computer A- rithmetic( ARITH-15'01 ) ,New York:IEEE Press,2001:23-32.
  • 10Yan Xiaodong, Li Shuguo. Montgomery Multiplier Based on Secondary Booth Encoded Algorithm[ C ]//Proceeding of 2007 In- ternational Conference on ASIC,New York:IEEE Press,2007 : 197 -200.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部