期刊文献+

基于UPF的移动机器人定位新方法 被引量:1

A New Mobile Robot Location Method Based on UPF
下载PDF
导出
摘要 粒子滤波算法适用于非线性非高斯系统,被广泛应用于移动机器人定位中.分析粒子滤波的原理,针对传统粒子滤波算法性能较大程度上取决于重要性替代分布的选择这一缺陷,引入无迹卡尔曼滤波加以改进,最后给出该方法在移动机器人定位中的应用. Particle Filter is suitable for nonlinear non-Gaussian system.It is widely used in the mobile robot location.Analyze the principle of Particle Filter,find out that its performance largely depends on the selection of proposal importance distribution.Contrapose to the bug,import the Unscented Kalman Filter to improve it.At last present the application of this algorithm in the mobile robot location.
出处 《微电子学与计算机》 CSCD 北大核心 2009年第2期159-162,共4页 Microelectronics & Computer
关键词 粒子滤波 移动机器人 定位 无迹卡尔曼滤波 particle filter mobile robot location unscented Kalman filter
  • 相关文献

参考文献2

二级参考文献11

  • 1李磊磊,陈家,斌谢玲,刘星桥,徐建华.粒子滤波方法在GPS/DR组合导航系统中的应用[J].微电子学与计算机,2004,21(10):97-99. 被引量:15
  • 2Y Bar-Shalom, X R Li, T Kirubarajan. Estimation with Applications to Tracking and Navigation. New York: John Wiley & Sons, 2001.
  • 3X R Li. Engineer's Guide to Variable-Structure Multiple-Model Estimation for Tracking. Multitarget-Muhisensor Tracking: Applications and Advances, MA: Artech House,2000, 3(10).
  • 4D D Sworder, J E Boyd. Estimation Problem in Hybrid Systems. Cambridge, UK: Cambridge University Press,1999.
  • 5C Musso, N Oudjane, F LeGland. Improving Regularised Particle Filters. Sequential Monte Carlo Methods in Practice, New York: Springer, 2001.
  • 6S McGinnity, G W Irwin. Multiple Model Bootstrap Filter for Maneuvering Target Tracking. IEEE Trans. Aerospace and Electronic Systems, 2000, 36(3): 1006-1012.
  • 7D S Angelova, T A Semerdjiev, V P Jilkov, E A Semerdjiev. Application of Monte Carlo Method for Tracking Maneuvering Target in Clutter. Mathematics and Computers in Simulation, 2000, 1851: 1-9.
  • 8Y Bar-Shalom,X R Li.Estimation and tracking:Principles,Techniques and Software.Artech House,Boston,MA
  • 9Julier S J,Uhlmann J K,Durrant-Whyten H F.A new approach for filtering nonlinear system[A].Proc of the American Control Conf[C].Washington:Seattle,1995:1628~1632
  • 10Julier S J,Uhlmann J K,A new extension of the Kalman filter to nonlinear systems[A].The Proc of Aero sense:11th Int Symposium Aerospace/Defense Sensing,Simulation and Controls[C].Orlando,1997:54~65

共引文献7

同被引文献11

  • 1田力伟,黄建国.粒子滤波在机动目标纯方位跟踪中的应用[J].微电子学与计算机,2005,22(10):81-84. 被引量:6
  • 2叶龙,王京玲,张勤.遗传重采样粒子滤波器[J].自动化学报,2007,33(8):885-887. 被引量:43
  • 3Dellaert F,Burgard,Fox D,et al.Monte-Carlo localization for mo-bile robots:Artificial intelligence [C]// Proceedings of the IEEEInternational Conference on Robotics and Automation,ICR A ’ 98,Detroit,1999;1322-1328.
  • 4Ababneh J I,Batained M H.Linear phase FIR filter design usingparticle swarm optimization and genetic algorithms [J].DigitalSignal Processing,2008,18(4):657-668.
  • 5朱志宇.粒子滤波算法极其应用[M].北京:科学出版社,2010;29.
  • 6Dissanavalce G,Newman P M,Clark S,et al.A solution to simul-taneous localization and map(SLAM)building problem[J].IEEETransactions on Robotics and Automation,2001,17(3):229-241.
  • 7Doucet A,Godsill S,Andrieu C.On sequential Monte Carlo sam-pling methods for Bayesian filtering [J].Statistics and Compu-ting,2000,10(3):197-208.
  • 8Yang XiaodongXiang Fenghong,Mao Jianlin,et al.Improved par-ticle filter algorithms for target tracking in binary wireless sensornetworks[C]// Proceedings of the 30th Chinese Control Confe-rence,Y antai,2011.
  • 9Miguez J,Bugallo M F,Djuric P M.A new class of particle filtersfor random dynamical systems with unknown statistics[J].EUR-ASIP Journal on Applied Signal Processing,2004(15):2278-,r2294.
  • 10杨宁,钱峰,朱瑞.基于遗传算法的改进粒子滤波算法[J].上海交通大学学报,2011,45(10):1526-1530. 被引量:14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部