期刊文献+

基于KDA和SVM的文档分类算法 被引量:1

Document classification algorithm based on KDA and SVM
下载PDF
导出
摘要 为了高效地解决Web文档分类问题,提出了一种基于核鉴别分析方法KDA和SVM的文档分类算法。该算法首先利用KDA对训练集中的高维Web文档空间进行降维,然后在降维后的低维特征空间中利用乘性更新规则优化的SVM进行分类预测。采用了文档分类领域两个著名的数据集Reuters-21578和20-Newsgroup进行实验,实验结果表明该算法不仅获得了更高的分类准确率,而且具有较少的运行时间。 To efficiently solve Web document classification problem,a novel document classification algorithm based on kernel discriminant analysis(KDA) and SVM was proposed.The proposed algorithm firstly reduced the high dimensional Web document space in the training sets to the lower dimensional space with KDA algorithm,then the classification and predication in the lower dimensional feature space were implemented with the multiplicative update-based optimal SVM.The experimental evaluations were performed on the Reu...
作者 王自强 钱旭
出处 《计算机应用》 CSCD 北大核心 2009年第2期416-418,共3页 journal of Computer Applications
基金 教育部科学技术研究重点资助项目(107021)
关键词 文档分类 核鉴别分析 支持向量机 数据挖掘 document classification Kernel Discriminant Analysis(KDA) Support Vector Machine(SVM) data mining
  • 相关文献

参考文献9

  • 1SHA F,LINY Q,SAULLK,LEE D D.Multiplicative updates for nonnegative quadratic programming[].Neural Computation.2007
  • 2LEWIS D D.Reuters.21578text categorization collection. http://kdd.ics.uci.edu/databases/reu.ters21578/reuters21578.html . 2008
  • 3News Group. http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.htm . 2008
  • 4Sebastiani,F Machine Learning in Automated Text Categorization. ACM Computing Surveys . 2002
  • 5Vapnik V N.The Nature of Statistical Learning Theory[]..1995
  • 6Baudat G,Anouar F.Generalized discriminant analysis using a kernel approach[].Neural Computation.2000
  • 7MIKA S,RATSCHG,WESTON J,et al.Fisher discriminant a-nalysis with Kernels[].Proceedings of IEEE i nternationalWorkshop on Neural Networks for Si ngnal Processi ng.1999
  • 8Duda R,Hart P,Stork D.Pattern Classification, second edition[]..2000
  • 9Hsu C W,,Lin CJ.Acomparison of methods for multi-class sup-port vector machines[].IEEE Transactions on Neural Networks.2002

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部