期刊文献+

基于遗传FCM算法的文本聚类 被引量:5

Text clustering based on genetic fuzzy C-means algorithm
下载PDF
导出
摘要 提出了基于遗传FCM算法的文本聚类方法,首先采用LSI方法对文本特征进行降维,然后通过聚类有效性分析得到文本的类别数,最后采用遗传FCM算法对文本进行聚类。该方法较好地克服了FCM算法收敛于局部最优的缺陷,很好地解决了FCM算法对初始聚类中心敏感的问题。实验结果表明该方法具有较好的聚类性能。 A text clustering method based on genetic fuzzy c-means algorithm was proposed.At first,latent semantic index was used to reduce the dimension of text feature and then the number of text class was obtained through analyzing the validity of clustering.At last,genetic FCM algorithm was used to cluster the text.The proposed method overcomes the flaw of FCM algorithm which may converge to local optimum,and it resolves the problem of FCM algorithm which is sensitive to the initialized value of cluster center.The...
作者 况夯 罗军
出处 《计算机应用》 CSCD 北大核心 2009年第2期558-560,564,共4页 journal of Computer Applications
关键词 文本聚类 特征选择 潜在语义索引 遗传算法 模糊C均值聚类 text clustering feature selection Latent Semantic Index(LSI) Genetic Algorithm(GA) fuzzy C-means clustering
  • 相关文献

参考文献6

二级参考文献64

  • 1林春燕,朱东华.一种快速的文本聚类-分类法[J].计算机工程与科学,2004,26(7):74-76. 被引量:3
  • 2周宁,杨峰.信息可视化系统的RDV模型研究[J].情报学报,2004,23(5):619-624. 被引量:22
  • 3[1]H H Bock.Probabilistic models in cluster analysis.Computational Statistics & Data Analysis,1996,23:5~28
  • 4[2]Chris Fraley,Adrian E Raftery.Model-based clustering,discriminate analysis,and density estimation.Department of Statistics,University of Washington,Tech Rep:380,2000
  • 5[3]Petri T Kontkanen,Petri J Myllymaki,Henry R Tirri.Comparing Bayesian model class selection criteria by discrete finite mixtures.In:D L Dowl,K B Korb,J J Oliver eds.Information,Statistics and Induction in Science (Proc of the ISIS'96 Conf in Melbourne.Australia,1996).Singapore:World Scientific,1996.364~374
  • 6[4]An Introduction to Cluster Analysis for Data Mining.http://www.cs.umn.edu/classes/Spring-2000/csci5980-dm/cluster-survey.pdf
  • 7[5]高等数理统计.超星数字图书馆.http://www.ssreader.com.cn.442~444(Advanced Mathematical Statistics (in Chinese),Superstar Digital Library.http://www.ssreader.com.cn.442~444)
  • 8[6]Jeff A Bilmes.A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models.Computer Science Division Department of Electrical Engineering and Computer Science,U C Berkeley,Tech Rep:TR-97-021,1998
  • 9[7]R E Kass,A E Raftery.Bayesian factors and model uncertainly.Department of Statistics,Carnegie-Mellon University,Tech Rep:571,1993
  • 10[8]I J Good.Weight of evidence:A brief survey.In:J M Bernade ed.Bayesian Statistics 2.New York:Elsevier,1985.249~269

共引文献157

同被引文献51

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部