摘要
研究了垃圾邮件的指纹特征向量表示和SVM过滤方法,设计实现了基于指纹特征和SMO的在线式邮件过滤器FSVM,在在线垃圾信息过滤上获得到了与传统方法相当的效果.在SVM过滤的运算速度方面,基于原始SMO算法,对上述在线方法提出了邮件样本动态集方法(DFSVM)进行条件减弱,在降低了计算量的同时能够保证指纹SMO获得相当的过滤效果.在标准测试集和真实邮件系统中进行了实验验证和对比,结果表明,该改进对提高SVM分类精读有一定的帮助.
The finger features vectoring and the SVM filtering method are proposed on the spam,and an online SVM spam filter called FSVM is designed and implemented,which attains the corresponding performance as the classic method in the online spam filtering.In view of the computing speed of SVM filtering,a dynamic example set reduction method(DFSVM) is given out for SVM filtering method based on the original SMO algorithm,which can greatly reduce the computing cost and keep the corresponding performance.The experime...
出处
《郑州大学学报(理学版)》
CAS
北大核心
2009年第1期90-93,98,共5页
Journal of Zhengzhou University:Natural Science Edition