摘要
利用灰色预测需要样本数据量少、建模过程简单的特点 ,对中长期电力负荷进行前期预测 ,结合人工神经网络对大量非线性、非精确性规律具有自适应和自学习能力的优点 ,在考虑经济因素的前提下对输入数据进行了预处理 ,采用改进的BP算法最终得出了预测结果 .
Grey forecast needs less number of data and it's easy to build model when we use it to forecast the mid\|and long\|term electric load.Artificial neutral network has some benefits such as acclimatizing itself to many non\|linear and imprecise rules and self\|studying.Pretreatment of the input data on the premise of consideration of economic factors and using improved BP algorithm we can get the forecasting results.The example in the article shows that the presented method is feasible and effective.
出处
《首都师范大学学报(自然科学版)》
2004年第2期22-25,共4页
Journal of Capital Normal University:Natural Science Edition