摘要
Let f be a holomorphic function on the unit polydisc Dn,with Taylor expansion f(z) = ∞ |k|=0 akzk ≡∞ (k1+···+kn=0) (ak1,···,kn zk1 1znkn)where k = (k1, , kn) ∈ Z+n. The authors define generalized Hilbert operator on Dn by Hγ,n(f)(z) = ∞ |k|=0 i1,···,in≥0 ai1,···,in n j=1 Γ(γj + kj + 1)Γ(kj + ij + 1) Γ(kj + 1)Γ(kj + ij + γj + 2) zk,where γ∈ Cn, such that R γj > -1, j = 1, 2, , n. An upper bound for the norm of the operator on Hardy spaces Hp(Dn) is found. The authors also present a Fejér-Riesz type inequalit...
Let f be a holomorphic function on the unit polydisc Dn,with Taylor expansion f(z) = ∞ |k|=0 akzk ≡ ∞ (k1+···+kn=0) (ak1,···,kn zk1 1znkn)where k = (k1, , kn) ∈ Z+n. The authors define generalized Hilbert operator on Dn by Hγ,n(f)(z) = ∞ |k|=0 i1,···,in≥0 ai1,···,in n j=1 Γ(γj + kj + 1)Γ(kj + ij + 1) Γ(kj + 1)Γ(kj + ij + γj + 2) zk,where γ ∈ Cn, such that R γj > -1, j = 1, 2, , n. An upper bound for the norm of the operator on Hardy spaces Hp(Dn) is found. The authors also present a Fejér-Riesz type ineq...
出处
《软件工程师》
2009年第4期-,共10页
Software Engineer
基金
Supported by the NNSF of China(10671115)
grants from Specialized Research Fund for the doctoral program of Higher Education(20060560002)
NSF of Guangdong Province(7300614)
Generalized Hilbert operator
Fejé r-Riesz inequality
a-Bloch space