期刊文献+

基于NetFlow的用户行为挖掘算法设计 被引量:6

Mining algorithm design on user behavior based on NetFlow
下载PDF
导出
摘要 网络安全技术以防火墙、入侵检测等为主,较少从网络用户行为角度考虑可能进行的破坏行为。针对此问题,对网络流量NetFlow采集、统计,设计了表示用户行为特征的数据结构及统计模式,获得了行为的具体信息,建立了在一定时间粒度下的行为数据库;并在行为数据库的基础上,设计出适用于用户行为特征的聚类挖掘算法,定义了用户行为距离,确定各个用户的网络行为模式。实验表明,所设计算法可有效挖掘用户的网络行为,为管理、分析用户行为提供了有效依据。 Most of the existing network security technologies mainly focus on firewall,intrusion detect system(IDS),and give less consideration on network malicious behavior from user behavior angle In accordance with aforementioned problem,designed and defined the structure of user behavior feature and the pattern of statistics,set up user behavior s database and got user behavior s detail information.The data were based on NetFlow collection and statistics.According to the information in database,designed the cluste...
出处 《计算机应用研究》 CSCD 北大核心 2009年第2期713-715,共3页 Application Research of Computers
基金 国家"242"信息安全计划资助项目(2006C27)
关键词 NETFLOW 数据挖掘 用户行为 行为距离 NetFlow data mining user behavior distance of user behavior
  • 相关文献

参考文献5

二级参考文献20

  • 1王培发,张世维,李俊.SVG在网络流量监控中的应用与实现[J].微电子学与计算机,2005,22(4):162-165. 被引量:5
  • 2Hart J Kamber M.范明 孟小峰等译.数据挖掘:概念与技术[M].北京:机械工业出版社,2001..
  • 3HandD MannilaH SmythP 张银奎 廖丽 宋俊.数据挖掘原理[M].北京:机械工业出版社,2003.48-54.
  • 4Agrawal R, Imielinski T, Swami A. Mining Association Rules between Sets of Items in Large Databases[ C]. Proceedings of ACM SIGMOD International Conference on Management of Data, Washington DC, 1993. 207-216.
  • 5Han J, Pei J, Yin Y. Mining Frequent Patterns without Candidate Generation[ C]. Proceedings of ACM SIGMOD International Conference on Management of Data, Dallas, TX, 2000. 1-12.
  • 6Hay B, et al. Clustering Navigation Patterns on a Website Using a Sequence Alignment Method [ C ]. Proc of Intelligent Techniques for Web Personalization: LICAI 2001 17th International Joint Conference on Artificial Intelligence, Seattle, Washington DC, 2001. 1-6.
  • 7http://www. chinalabs. com/cache/doc/03/05/15/88.shtml.
  • 8Cyrus Shahabi, Farnoush Banaei-Kashani. A Framework for Efficient and Anonymous Web Usage Mining Based on Client -Side Tracking, WEBKDD-Mining Web Log Data Across All Customers Touch Points. 2001, 3:113-143.
  • 9Denning D. An Intrusion Detection Model. IEEE Trans. Software Engineering, Feb 1987.
  • 10Abraham, B. and Chang , A. (1989). Outlier detection and time series modeling. Techonometrics,31,241~248.

共引文献47

同被引文献58

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部