期刊文献+

基于RBF神经网络的风力发电机组故障诊断研究 被引量:8

Fault diagnosis for wind turbine based on RBF neural network
下载PDF
导出
摘要 风力发电机组是一个复杂的机电系统,采用整机诊断模式将使系统非常复杂,诊断效果也不理想;采用两层诊断模式不但实现起来简单,而且可以获得很好的诊断效果。使用RBF神经网络对发电机子系统进行故障诊断,仿真结果表明该诊断方法满足要求。 Because wind turbine is a complex mechanical and electrical system,using diagnostic mode for whole wind turbine will be a very complex system,diagnostic effect is not satisfying;diagnosis using two-layered model is not only simple,but the diagnosis could get very good effect.RBF neural network will be used to diagnose for the generator subsystem,and the diagnostic methods to meet demand will be proved by simulation results.
作者 杨伟 贾石峰
出处 《电气传动自动化》 2009年第2期18-20,共3页 Electric Drive Automation
关键词 风力发电机组 故障诊断 神经网络 RBF wind turbine fault diagnosis neural network RBF
  • 相关文献

同被引文献45

  • 1张贝克,吴重光.一种基于SDG用于危险分析的新型定性仿真技术(英文)[J].系统仿真学报,2005,17(6):1339-1342. 被引量:7
  • 2段礼祥,张来斌,王朝晖.柴油机燃烧系统故障的小波包神经网络模糊诊断法[J].机械强度,2006,28(1):1-5. 被引量:17
  • 3李永东,苑国锋.中国风力发电的发展现状和前景[J].电气时代,2006(3):16-18. 被引量:22
  • 4陈新国,程耕国.基于小波分析的齿轮故障诊断方法的研究[J].机械传动,2005,29(6):17-19. 被引量:5
  • 5唐新安,谢志明,王哲,吴金强.风力机齿轮箱故障诊断[J].噪声与振动控制,2007,27(1):120-124. 被引量:47
  • 6LIU Yi-bing,WU Qi,MA Zhi-yong,et al. An improved Hilbert-Huang transform and its application in faults signal analysis[C]//IEEE International Conference on Mechatronics and Automation.Luoyang: IEEE, 2006 : 2426-2431.
  • 7LIU Yi-bing,ZHOU Yan-bing,XIN Wei-dong,et al. Bispectrum analysis for feature extraction of pitting fault in wind turbine gearbox[C]//IEEE International Conference on Mechatronics and Automation.Xi'an:IEEE,2010:1298- 1301.
  • 8XU Chunmei, ZHANG Hao, PENG Daogang, et al. Study ofFault Diagnosis of Integrate of D-S Evidence Theory Based on Neural Network for Turbine [ J ]. Energy Procedia, 2012, 16 (C) :20207 - 2032.
  • 9DU Hailian, LV Feng, LI Shue, et al. Study of Fault Diagnosis Method Based on Data Fusion Technology [ J ]. Procedia Engi- neering,2012,29 ( C ) :2590 - 2594.
  • 10SALAHSHOOR Karim, KORDESTANI Mojtaba, KHOSHRO Majid S. Fault Detection and Diagnosis of an Industrial Steam Turbine Using Fusion of SVM ( Support Vector Machine ) and ANFIS ( Adaptive Neuro-fuzzy Inference System ) classifiers [ J]. Energy,2010,35:5472 - 5482.

引证文献8

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部