期刊文献+

基于SVM的尿液粒子识别算法研究

The Study of SVM-Based Recognition of Particles in Urine Sediment
下载PDF
导出
摘要 本文将支持向量机的算法引入到尿沉渣有形成分的分类问题上。在提取特征的基础上,采用交叉验证法和精度等高线图进行核函数及参数的选择,根据支持向量机和数据集特点,设计出由两级分类器集成的支持向量机多分类器,得到了相应的混淆矩阵。临床实验数据分类评测以及与神经网络方法比较结果表明,提出的算法具有一定的优势。 This article used sup[port vector machine(SVM) algorithm to recognize the particles in urine sediment in this paper. After feature extraction,cross-validation method and the contour chart of the accuracy were implemented to select the kernel function and the parameters of SVM,and according to the characteristics of SVM classifier and sample data, Multi-SVMs with two-level-classifier was successfully designed and A classification matrix was eventually obtained. The evaluation by using clinical data and compa...
出处 《中国医疗器械杂志》 CAS 2008年第6期409-412,共4页 Chinese Journal of Medical Instrumentation
关键词 统计学习理论 支持向量机 尿沉渣图像 交叉验证 混淆矩阵 statistical learning theory support vector machine SVM urine sediment cross-validation classification-matrix
  • 相关文献

参考文献8

  • 1沈美丽,陈殿仁.支持向量机在尿沉渣有形成分分类中的应用[J].电子器件,2006,29(1):98-101. 被引量:3
  • 2[2]LAKATOS Jozsef,BODOR Tibor,ZIDARICS Zoltan,et al,Data processing of digital recordings of microscopic examination of urinary sediment.Clinica Chimica Acta,2000,297:225~237.
  • 3蔡永军,刘伟玲,虞启琏.遗传神经网络在尿沉渣识别中的应用[J].医疗卫生装备,2004,25(11):1-2. 被引量:5
  • 4[5]Vapnik V,Lerner A.Pattern Recognition using Generalized Portrait,Automation and Remote Control.1963,24:774-780
  • 5[7]Platt J.Fast Training of Support Vector Machines Using Sequential Minimal Optimization in Advances in Kernel Methods.Cambridge,Mass:MIT Press,1999,185-208
  • 6[8]C W Hsu,C J Lin.A Comparision of Methods for Multi-class Support Vector Machines.IEEE Transactions on Neural Networks,2002,13:415-425
  • 7[10]Joachims T.Making Large-Scale SVM learning Practical In:Scholkopf B,Burges C J C.Smola A eds,Advances in Kernel Methods-Support Vector Learning,Cambridge,MA:M1T Press,1998,169-184
  • 8[11]Chih-Chung Chang and Chih-Jen Lin.A Library for Support Vector Machines http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf 2008 -5-13

二级参考文献9

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部