摘要
The energy, lattice parameters, electronic structures, and elastic constants of the intermetallic compound β-Nb5Si3 alloyed by Ti, Cr, Al, and Hf elements are investigated using first-principles methods based on plane-wave pseudopotential theory. From the impurity forma- tion energy calculated, it is found that Ti, Cr, and Hf prefer to occupy the NbI, NbI, and NbII site, respectively, and that Al decreases the stability of β-Nb5Si3. Ti and Cr atoms reduce the c/a ratio of crystal lattices and Hf atom transf...
The energy, lattice parameters, electronic structures, and elastic constants of the intermetallic compound β-Nb5Si3 alloyed by Ti, Cr, Al, and Hf elements are investigated using first-principles methods based on plane-wave pseudopotential theory. From the impurity forma- tion energy calculated, it is found that Ti, Cr, and Hf prefer to occupy the NbI, NbI, and NbII site, respectively, and that Al decreases the stability of β-Nb5Si3. Ti and Cr atoms reduce the c/a ratio of crystal lattices and Hf atom transf...
基金
Foundation of Beijing Institute of Aeronautical Materi-als (KF36060103)