期刊文献+

平面简单闭曲线上的一个不等式 被引量:2

A Inequality on Plane Simple Closed Curve
下载PDF
导出
摘要 根据平面上嵌入曲线流的发展演化过程,由其存在的最大有限时间,给出了平面上简单闭曲线所围有限区域的面积和曲线最大曲率平方之间的一个不等式关系. According to the development and evolution of the flow curve embedded in the plane,through the existing maxium limited time,then,a inequality relationship between the limited area and the maximum curvature of simple planar closed curve is given.
作者 邢巧芳 何梅
出处 《华北水利水电学院学报》 2009年第2期111-112,共2页 North China Institute of Water Conservancy and Hydroelectric Power
关键词 平面曲线流 等周不等式 演化方程 曲率 planar curve flow isoperimetric inequality evolution equation curvature
  • 相关文献

参考文献2

二级参考文献11

  • 1Tsai D H,Comm Anal Geom,1996年,4卷,459页
  • 2Chow B,J Diff Geom,1996年,44卷,312页
  • 3Altschuler, S.: Singularities of the curve shrinking flow for space curves. J. Diff. Geom., 34, 491-514 (1991).
  • 4Grayson, M.: The heat equation shrinks embedded plane curves to round points. J. Diff. Geom., 26,285-314 (1987).
  • 5Huisken, G.: Asymptotic behaviour for singularities of the mean curvature flow. J. Diff. Geom., 31,285-299 (1990).
  • 6Horn, R.: On Fenchel's theorem. Amer. Math. Monthly, 78, 380-381 (1971).
  • 7Spivak, M.: A comprehensive introduction to differentiai geometry. Vol. 4, 2nd edition, Publisher or Perish,Inc, Berkely, 1997.
  • 8Angenent, S.: Parabolic equations for curves on surfaces Ⅱ, Intersections, blow up and generalized solutions. Ann. Math., 131(2), 171-215 (1991).
  • 9Clingenberg, W.: A course in differential geometry, Graduate Texts Mathematics, 51, Springcr-Verlag,Berlin, 1978.
  • 10Gage, M., Hamilton, R.: The heat equation shrinking convex plane curves, d. Diff. Geom., 23, 69-96(1986).

共引文献12

同被引文献1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部