摘要
应用二分量方法,求解了Quesne环状球谐振子势场中1/2自旋粒子满足的Dirac方程,Dirac哈密顿量由标量和矢量Quesne环状球谐振子势构成.在Σ=S(r)+V(r)=0的条件下,得到了Dirac旋量波函数下分量的束缚态解和能谱方程,显示出Quesne环势场中的赝自旋对称性.讨论了束缚态波函数和能谱方程的有关性质.
The Quesne ring-shaped spherical harmonic oscillator potential is studied for spin 1/2-particles based on the Dirac equation,the Dirac Hamiltonian contains a scalar and a vector Quesne ring-shaped harmonic oscillator potentials.Setting Σ=S(r)+V(r)=0,the bound state solutions and eigenenergies are obtained with the two-component approach.The result shows the pseudospin symmetry is existed in the Quesne ring-shaped harmonic oscillator potential.The general properties of the both ring-shaped spherical harmonic...
出处
《陕西师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第2期38-41,共4页
Journal of Shaanxi Normal University:Natural Science Edition