期刊文献+

两类相对转动非线性动力学系统的统一动力学模型及混沌运动 被引量:1

Unified dynamics model of two kind of relative rotation nonlinear dynamics system and chaos
下载PDF
导出
摘要 建立了具有广义阻尼力和非线性恢复力的二端面转轴相对转动系统与一类两质量相对转动系统的统一的非线性动力学模型。在弱周期力的条件下,研究了统一系统的混沌运动表现,应用Melnikov方法给出了系统发生混沌的必要条件,并利用倍周期分岔方法,进一步分析了系统的混沌行为。 The two end surface revolution axis relative rotation system and a kind of two quality relative rotation system unified non- linear dynamics model are established, under the generalized damping force and the nonlinear resiliency. And chaos movement performance of unification system is studied, under weak cyclical strength condition. The necessary condition of chaotic motion of system is presedted as well, by using Melnikov method. Finaly, the chaotic motion of system is complemented by using period doubing ...
机构地区 燕山大学理学院
出处 《燕山大学学报》 CAS 2009年第2期159-162,188,共5页 Journal of Yanshan University
基金 国家自然科学基金资助项目(40374048) 河北教育厅科研计划资助项目(2006447)
关键词 相对转动 非线性动力系统 倍周期分岔 混沌 relative rotation nonlinear dynamic system period doubing bifurcatio chaos
  • 相关文献

参考文献9

二级参考文献59

共引文献57

同被引文献16

  • 1赵武,刘彬,时培明,蒋金水.一类非线性相对转动周期系统的平衡稳定性分析[J].物理学报,2006,55(8):3852-3857. 被引量:16
  • 2Thompson J M T, Rainey F C T, Soliman M S. Ship stability criteria based on chaotic transients from incursive fractals [J]. Philosophical Transactions of the Royal Society, 1995, 332(1) : 149 -167.
  • 3Gan C B. Noise-Induced chaos and basin erosion in softening Duffing oscillator [ J ]. Chaos, Solitons and Fractals, 2005, 25(5) : 1069 - 1081.
  • 4Rega G, Valeria S. Bifurcation, response scenarios and dynamic integrity in a single-mode model of noncontact atomic force microscopy [ J]. Nonlinear Dynamics, 2013, 73 (1/ 2) : 101 - 123.
  • 5Xu J, Yu P. Delay-induced bifurcations in a nonautonomous system with delayed velocity feedbacks [ J ]. International Journal of Bifurcation and Chaos, 2004, 14 ( 8 ) : 2777 - 2798.
  • 6Shao S, Masti K M, Younis M I. The effect of time-delayed feedback controller on an electrically actuatedresonator [ J ]. Nonlinear Dynamics, 2013, 74(1/2) : 257 -270.
  • 7Alsaleem F M, Younis M I. Stabilization of electrostatic MEMS resonators using a delayed feedbackcontroller [ J ]. Smart Materials and Structures, 2010, 19(3): 035016.
  • 8Shang H L, Xu J. Delayed feedbacks to control the fractal erosion of sal basins in a parametrically excited system [J]. Chaos, Solitons and Fractals, 2009, 41(4) : 1880- 1896.
  • 9Thomsen J J, Fidlin A. Analytical approximations for stick - slip vibration amplitudes [ J ]. International Journal of Nonlinear Mechanics, 2003, 38(3): 389-403.
  • 10罗绍凯.转动系统的相对论性分析力学理论[J].应用数学和力学,1998,19(1):43-53. 被引量:31

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部