期刊文献+

一种融合Kalman预测和Mean-shift搜索的视频运动目标跟踪新方法 被引量:7

Approach to Tracking of Video Moving Objects by Fusing Kalman Prediction and Mean-shift Search
下载PDF
导出
摘要 简要介绍Kalman滤波跟踪和Mean-shift跟踪并分析其优缺点,在此基础上提出一种融合Kalman预测和Mean-shift搜索的运动目标跟踪新方法。该方法利用Kalman滤波估计出运动目标在下一帧中最可能的出现位置,利用Mean-shift方法据此进行较小范围的搜索和目标匹配,从而可用较小的运算量获得较为可靠的跟踪效果,并适应较复杂的场景。实验结果证明了该算法的有效性。 Following a brief introduction to Kalman-filter-based tracking methods and Mean-shift-based tracking methods and a discussion about their strong points and weak points,a novel approach to tracking of video moving objects(VMOs) is proposed.By using Kalman-filter to predict locations where VMOs most probably appear in a next-frame and Mean-shift algorithm to search in the corresponding areas and match the VMOs,the approach promises to obtain more reliable tracking effect with much less computation cost.The ex...
出处 《光电子技术》 CAS 北大核心 2009年第1期30-33,共4页 Optoelectronic Technology
基金 国家自然科学基金资助项目(60672026)
关键词 运动目标 跟踪 检测 KALMAN滤波器 均值平移搜索 video moving objects tracking detection Kalman filter Mean-shift
  • 相关文献

参考文献4

  • 1Jang Dae-Sik,,Kim Gye-Young,Choi Hyung-Il.Kalman filterincorporated model updating for real-time tracking[].Proc IEEE TENCONDigital Signal Processing Applications.1996
  • 2Kalman,R. E.A New Approach to Linear Filtering and Prediction Problems[].Transaction of the ASAE.1960
  • 3Dorin Comaniciu,Visvanathan Ramesh,Peter Meer.Real-time tracking of non-rigid objects using mean shift[].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.2000
  • 4Dorin Comaniciu,Peter Meer.Mean shift: A robust approach toward feature space analysis[].IEEE Transactions on Pattern Analysis and Machine Intelligence.2002

同被引文献52

引证文献7

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部