期刊文献+

可微动力系统的渐近性研究及其在神经网络中的应用 被引量:2

Asymptotic Behavior of Differentiable Dynamical Systems and Application in Neural Networks
下载PDF
导出
摘要 可微动力系统是国内外学者广泛研究的问题有广泛的应用背景。特别是在人工神经网络领域中应用已成为国际学术热点。试图介绍可为动力系统与人工神经网络方面的最新研究成果。 In this paper, the new progress on asymptotic behaviov of differentiable dynamical systems and application in neural networks are introduceted.
出处 《聊城大学学报(自然科学版)》 2004年第2期12-14,共3页 Journal of Liaocheng University:Natural Science Edition
关键词 可微动力系统 渐近性 神经网络 偏泛函微分方程 矩阵微分方程 Asymptotic behavior, differentiable dynamical systems, neural networks, applications.
  • 相关文献

参考文献4

二级参考文献18

共引文献83

同被引文献16

  • 1陈红军,周建平,王林山.一类时滞静态神经网络模型的全局渐近稳定性[J].聊城大学学报(自然科学版),2006,19(1):19-21. 被引量:2
  • 2Fredric M Ham,Ivica Kostanic.神经计算原理[M].叶世伟,王海娟,译.北京:机械工业出版社,2007.
  • 3Boyd S,Ghaoui L EI,Feron E,Be et al.Linear Matrix Inequalities in Systems and Control Theory[M].Philadephia:SIAM,1994.
  • 4Wang L S,Zhang.Y,Zhang Z,et al.LMI-based approach for global exponential robust stability for reaction-dffusion uncertain neural networks with time-varying delay[J].Chaos,Solitons and Fractals,2009,41(4):900-905.
  • 5Wang L S,Wang Y F.LMI-based approach of global exponential robust stability for a class of uncertain distributed parameter control systems with time-varying delays[J].Journal of Vibration and Control,2009,15(8):1173-1185.
  • 6Wang L S,Gao Y Y.Global exponential robust stability of reaction-diffusion interval neural networks with time-varying delays[J].Phys Lett A,2006,350:342-348.
  • 7Wang L S,Zhang R J,Wang Y F.Global exponential stability of reaction-diffusion cellular neural networks with S-type distributedtime delays[J].Nonlinear Analysis B,2009,10:1 101-1 113.
  • 8Xu D Y,Zhao H Y,Zhu H.Global dynamics of Hopfield neural involving variable delays[J].Comput Math App,2001,42(1):39-45.
  • 9Liang J L,Cao J D.Boundedness and stability for recurrent neural networks with variable coefficients and time-varying delays[J].Physics Letters A,2003,318:53-64.
  • 10Burton T A.Stability and periodic solutions of ordinary and functional differential equations[M].New York:Academic Press,1985.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部