期刊文献+

数论变换算法(NTT)应用于图像压缩技术 被引量:1

Research on arithmetic of the number theory transformation(NTT) applied in the image compression
下载PDF
导出
摘要 提出了一种全新的图像数据压缩算法 ,即数论变换 (NTT ,NumberTheoryTransforma tion)算法 .证明了在以正整数 p为模的整数环Zp 上NTT是线性正交变换 ,以及在Zp 上具有卷积特性等 .设计了具有FFT类型的快速算法 ,该算法可采用移位操作实现 ,其速度优于DCT(离散余弦 )变换 .最后通过实例比较 ,说明了该算法在图像数据压缩中表现出运算速度快、精度高和压缩效果好等优点 .NTT算法的研究 。 A new image compression arithmetic is put forward, i e. the Number Theoretic Transformation (NTT). It proves that the NTT on the integral ring Z p module p is linear transformation and the NTT on Z p has the convolution characteristic, and a quick arithmetic with FFT is designed. The arithmetic may be realized by shift and its velocity is superior to the DCT(Discrete Cosine Transformation). Finally by contrast of instances, it indicates that this method represents such advantages as fast velocity, high precision, and good effect of compression, etc. The study on NTT arithmetic exploits a new method for the image compression technique.
作者 张虹 张小飞
出处 《煤炭学报》 EI CAS CSCD 北大核心 2000年第z1期158-164,共7页 Journal of China Coal Society
基金 煤炭科学基金项目!(96电 10 10 3)
关键词 图像压缩技术 数论变换 多媒体数据 DCT image compression technique the number theory transformation multimedia data DCT
  • 相关文献

参考文献9

  • 1[3]Wallce C K. The JPEG still picture compression standard[J]. Common ACM, 1991,34(4):30~45.
  • 2华罗庚.数论导论[M].北京:科学出版社,1957.10-25.
  • 3[5]Agarwal R C, Burrus C S. Fast digital convolution using fermat transforms [J]. SWIEEECO Record, 1973,25(8): 538~543.
  • 4[6]Agarwal R C,Burrus C S. Fast convolution using fermat number transforms w ith application to digital filtering[J]. IEEE Transactions on Acoustics Speech and Signal Processing,1974,22(2):87~97.
  • 5[7]Agarwal R C,Burrus C S. Number theoretic transforms to implement fast digital convolution[J]. IEEE Transactions on Acoustics Speech and Signal Proce ssing, 1975,23(12): 550~560.
  • 6[10]Lawrence M A. A simplified binary arithmetic for the fermat number tran sform[J]. IEEE Transactions on Acoustics Speech and Signal Processing,1976,24 (5):356~359.
  • 7[11]Irving T K,Truong S. Complex integers convolutions over a direct sum o f Galois Fields[J]. IEEE Transaction on Information Theory,1975,21(6):657~661 .
  • 8[12]Reed I S, Truong T K. Convolutions over residue classes of quadratic i ntegers[J]. IEEE Transaction on Information Theory,1996,22(4):468~475.
  • 9[13]Reed I S, Truong T K. The use of finite fields to compute convolut ions[J]. IEEE Transaction on Information Theory,1975,21(2):208~213.

共引文献2

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部