期刊文献+

衰落信道下基于线性预测的迭代解调及译码技术:Turbo DPSK

Iterative Differential PSK Demodulation and Channel Decoding Based on Linear Prediction over Rayleigh Flat Fading Channels
下载PDF
导出
摘要 本文针对移动通信中常见的衰落信道的特点 ,提出了一种基于信道增益线性估计的TurboDPSK解调、译码技术 .其特点是在进行信道增益的线性估计时无需知道信道的自相关函数 ,可简化接收机的复杂度 .同时在系统中引入Per SurvivorProcess(PSP)和迭代译码技术 ,充分利用每次迭代后的信息进一步提高系统的性能 .计算机仿真表明 ,采用这种基于线性信道估计的TurboDPSK系统有很好的抗衰落性能 . Based on the properties of Rayleigh flat-fading channel model in mobile radio communication,we research and propose a kind of new turbo DPSK based on linear prediction of channel gain.The receiver has a simple structure due to the fact that linear prediction here does not depend on the autocorrelation function of the fading process.Moreover,we combine linear prediction with Per-survivor processing to improve channel estimation.Simulation result show that new Turbo DPSK system provides good BER performance in fading channel.
出处 《电子学报》 EI CAS CSCD 北大核心 2000年第z1期5-7,11,共4页 Acta Electronica Sinica
关键词 衰落 线性估计 PSP TURBO DPSK rayleigh flat-fading linear prediction PSP Turbo DPSK
  • 相关文献

参考文献6

  • 1[1]D.Divsalar and M.K.Simon.Multiple symbols differential detection of MPSK[J].IEEE Trans.Commun.,Mar.1990,38:300-308.
  • 2[2]M.Peleg and S.Shamai.Iterative decoding of coded and interleaved noncoherent multiple symbols detected DPSK[J].Electron.Lett.,June,1997,33(12):1018-1020.
  • 3[3]G.S.White and D.J.Costello.Turbo coding with differentially coherent and noncoherent modulation on nonfading and fading channels[C].in Proc.IEEE ISIT′97,Ulm,Germany,July,1997.
  • 4[4]P.Hoeher and J.Lodge.Turbo DPSK:Iterative Differential PSK Demodulation and Channel Decoding[C].ICC′98,598.
  • 5[5]J.H.Lodge,R.Young,P.Hoeher.Separable MAP filters for the decoding of product and concatenated codes[C].in Proc.IEEE ICC′93,Geneva,Swizerland,May,1993.
  • 6[6]R.Raheli,A.Polydoros,and C.K.Tzou.Per-survivor Processing:A general approach to MLSE in uncertain environments[J].IEEE Trans.Commun.,Feb.1995,43:354-364.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部