期刊文献+

正交各向异性弹塑性材料拉伸颈缩的数值模拟 被引量:4

On Finite Orthotropic Elastic-Plastic Necking Deformation of a Round Bar
下载PDF
导出
摘要 介绍了在乘法分解的基础上对正交各向异性弹塑材料进行有限变形计算的一种有限元方法 ,利用该方法考虑不同各向异性状态对正交各向异性材料圆棒试样的拉伸大应变颈缩过程进行了数值模拟。结果表明 :( 1 )材料塑性性质若在不同取向有明显差异 ,沿不同材料轴向拉伸反映的材料力学性能会有非常大的差别。这种差别在载荷和不同方向的径向颈缩位移上远较在颈部截面面积变化上明显 ;( 2 ) Hill的正交各向异性塑性理论并没有考虑晶体材料在各个与材料主轴平面有较大夹角的滑移面上容易发生剪切变形 ,所以不一定适于晶体塑性材料。同时本文研究进一步证实了作者建议的正交各向异性弹塑性有限变形计算方法的合理性。 The major aim of this paper is the research of finite deformation of orthotropic elastic-plasticity for a round bar under tension. Meanwhile, on the basis of multiplicative decomposition concept, a finite element method suitable to calculating the finite orthotropic elastic-plastic deformation has been suggested. The simulated results of the orthortropic finite plastic deformation of a bar made of orthortropic plastic material under large strain tension show the shape of the necking section of the bar is elliptic, and there are very evident differences in mechanical behavior and in defferent directional necking deformation when the tension is in different orientation.
作者 张克实
出处 《空军工程大学学报(自然科学版)》 CSCD 2000年第3期1-6,共6页 Journal of Air Force Engineering University(Natural Science Edition)
基金 国家自然科学基金资助项目!(19972 0 5 5 )
关键词 正交各向异性 弹塑性 有限变形 有限元方法 orthotropy plasticity finite deformation finite element method
  • 相关文献

参考文献4

  • 1[1] Gabriel G,Bathe KJ.Some computational issues in large strain elasto-plastic analysis[J].Computers and Structures,1995,56:249267.
  • 2[2] Kojic M,Grujovic N,Slavkovic R,et al.A General Orthotropic von Mises Plasticity Material Model With Mixed Hardening:Model Definition and Implicit Stress Integration Procedure[J].Transactions of the ASME Journal of Applied Mechanics,1996,63:376382.
  • 3[3] Lee E H.Elastic-Plastic Deformation at Finite Strains[J].Appl Mech,1969,36:16.
  • 4[5] Hill R.The Mathematical Theory of Plasticity[M].London: Oxford University Press,1950.

同被引文献32

  • 1聂铁军.数值计算方法[M].西安:西北工业大学出版社,1990,6..
  • 2嵇醒 殷家驹 汤亮.颈缩的有限元分析[J].固体力学学报,1983,4(4):532-542.
  • 3Chen WH. Necking of a bar. Int J Solids Struct, 1971, 7:685-717.
  • 4Saje M. Necking of a cylindrical bar in tension. Int J Solids Struct, 1979, 15:731-742.
  • 5Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar. Acta Metallurgica, 1984, 32:157-169.
  • 6HKS,Inc.,ABAQUS Version 5.8,User’s Manual,1999.
  • 7Hill R. The Mathematical Theory of Plasticity. London:Oxford University Press, 1950.
  • 8叶裕恭.基于偏析线的圆棒颈缩分析[J].力学学报,1986,18(1):46-56.
  • 9Sale M. Necking of a cylindrical bar in tension[M]. Int J Solids Struct, 1979:731-743.
  • 10Bridgman, P W. Studies in large plastic flow and fracture [M] .New York :McGraw-Hill Book Co,1952.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部