期刊文献+

关于非线性多调和方程的整体解的存在性

Existence of Entire Solutions to Nonlinear Poly-harmonic Equations in R^2
下载PDF
导出
摘要 本文主要研究形如:△ ((△nu)p ) + f(|x|, u, ?u)=0, x∈R2的非线性多调和方程的整体解, ?1*此处 n 是自然数,p>1 是实常数,f: R+ × R× R → R+是一个连续函数, ξα*:=|ξ|α?1ξ,ξ∈R,α>0,证明了该方程不存在径向对称的正整体解, 并给出存在无穷多个最终为负值且其渐进阶(当 n→∞时,|u| 作为无穷大量的阶)不低于 |x|2 log|x| 的整体解 u 的充分条件及渐进阶正好是 |x|2 log|x| 的 n n充分必要条件. In this paper two-dimensional nonlinear poly-harmonic equations of the form are considered, where p>1, b0, n is an integer (n1), xa*:=|x|a-1x, xR, a>0, and f:+RRR R+ is a continuous function. It is shown that any radially symmetric entire solution grows at least as fast as positive constant multiplies of-|x|2n(log|x|)1/(p-1) as |x|. It is given that some sufficient conditions and necessary conditions for the existence of infinitely many symmetric entire solutions which are asymptotic to positive constant multiples of -|x|2n(log|x|)1/(p-1) as |x|.
作者 吴炯圻
出处 《漳州师范学院学报(自然科学版)》 2004年第2期1-7,9,共8页 Journal of ZhangZhou Teachers College(Natural Science)
基金 福建省自然科学基金(F00018).
关键词 非线性多调和方程 整体解 存在性 径向对称 不动点定理 non-linear poly-harmonic equation entire solutions radially symmetric solutions fixed point theorem 2*1,0),,())((Rxuuxfupn=+DD-
  • 相关文献

参考文献9

  • 1[1]Yasuhiro Furusho, Kusano Takasi, Positive entire solutions to nonlinear biharmonic equations in the plane[J]. Journal of Computional and applied mathematics, 1998, 88:161-173.
  • 2[2]Kuwano N, Kusano T, Naito M., On elliptic equationsΔu = φ(x)uλuin R2[J]. Proc. Amer. Math. Soc. 1985, 93: 73-78.
  • 3[3]Kusano T, Naito M, Swanson C., Radial entire solutions of even order semilinear elliptic equations [J]. Kanad. J.Math., 1988, 40: 1281-1300
  • 4[4]Kusano Takasi, Yasuhiro Furusho., Symmetric positive entire solutions to nonlinear biharmonic equations [J]. Differential equations,1995, 32: 273-287.
  • 5[5]Xu Xingye, Yang Bicheng, Debnach L., Positive entire solutions of nonlinear polyharmonic equations in R2[J]. Appl. Math. Comp. 2002, 126: 377-388.
  • 6叶常青.一类R^2上奇异非线性双调和方程正整解[J].数学物理学报(A辑),2001,1(1):138-144. 被引量:18
  • 7文如庆,陈世明.一类半线性双调和方程的整体解[J].应用数学,1994,7(1):85-92. 被引量:20
  • 8许兴业.一类R^2上奇异非线性多重调和方程的正整解[J].应用数学学报,1999,22(2):186-192. 被引量:9
  • 9[12]Edwards R E. Functional analysis [M]. New York: Holt. Rinhart and Winston, 1985.

二级参考文献7

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部