摘要
本文主要研究形如:△ ((△nu)p ) + f(|x|, u, ?u)=0, x∈R2的非线性多调和方程的整体解, ?1*此处 n 是自然数,p>1 是实常数,f: R+ × R× R → R+是一个连续函数, ξα*:=|ξ|α?1ξ,ξ∈R,α>0,证明了该方程不存在径向对称的正整体解, 并给出存在无穷多个最终为负值且其渐进阶(当 n→∞时,|u| 作为无穷大量的阶)不低于 |x|2 log|x| 的整体解 u 的充分条件及渐进阶正好是 |x|2 log|x| 的 n n充分必要条件.
In this paper two-dimensional nonlinear poly-harmonic equations of the form are considered, where p>1, b0, n is an integer (n1), xa*:=|x|a-1x, xR, a>0, and f:+RRR R+ is a continuous function. It is shown that any radially symmetric entire solution grows at least as fast as positive constant multiplies of-|x|2n(log|x|)1/(p-1) as |x|. It is given that some sufficient conditions and necessary conditions for the existence of infinitely many symmetric entire solutions which are asymptotic to positive constant multiples of -|x|2n(log|x|)1/(p-1) as |x|.
出处
《漳州师范学院学报(自然科学版)》
2004年第2期1-7,9,共8页
Journal of ZhangZhou Teachers College(Natural Science)
基金
福建省自然科学基金(F00018).
关键词
非线性多调和方程
整体解
存在性
径向对称
不动点定理
non-linear poly-harmonic equation
entire solutions
radially symmetric solutions
fixed point theorem 2*1,0),,())((Rxuuxfupn=+DD-