摘要
进行教育考试信息挖掘与分析研究,有利于充分发掘教育考试数据的潜在价值,更好地为教育管理、决策提供科学的依据.针对教育考试数据,研究了教育考试数据挖掘系统的整体架构以及面向主题的数据挖掘实现.在分析教育考试数据资源现状与特点的基础上,提出了教育考试数据挖掘系统框架,采用Apriori算法生成频繁数据项集,并对考生高考科目成绩进行关联规则挖掘.结果表明,教育考试各门科目成绩之间存在紧密关联性,规则的置信度均达到75%以上.
With the help of data mining for education and examination data,education management and decision can be made scientifically.Based on the analysis of the education and examination data,a framework of education and examination data mining system was proposed.Algorithm Apriori was applied to the association rule mining in finding the relationship among the grades of the different subjects of the college entrance examination.The association rules mined shows that the grades of different subjects have close relationships,and the minimized support thresholds for all rules are larger than 75%.
出处
《北京工业大学学报》
EI
CAS
CSCD
北大核心
2009年第5期697-701,共5页
Journal of Beijing University of Technology
基金
北京市科学技术委员会重点课题资助项目(Y0105003040191)
北京工业大学博士科研启动基金资助项目(52007016200703).
关键词
数据仓库
数据挖掘
关联规则
教育考试数据库
data warehouse
data mining
association rule
education and examination database