摘要
设φ_n:B→B是一全纯映射列并且是单叶的,φ_n(0)=0,φ_n的Frechet导数是有界的,并且|J_(φ_z(z))|≠0且有界,C_(φ_n):D_α~2(B,dv_α)→D_β~2(B,dv_B)(α,β>2/(2+1))是一致有界线性复合算子列。作者利用测度给出了此复合算子列的总体紧性。
Suppose φ_n:B→B is a sequence of holomorphic and univalent functions, φ_n(0)=0, and the Frechet derivative of φ_n is bounded, |J_(φ_n)(z)|≠0,C_(φ_n):D_α~2(B,dv_α)→D_β~2(B,dv_β)(α,β>2/(2+1)) is a sequence of uniform bounded composition operators, the collective compactness of the operators sequences with the measure is investigated.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第2期302-306,共5页
Journal of Sichuan University(Natural Science Edition)
基金
国家自然科学基金(10371082)