期刊文献+

单位圆内有穷正级亚纯函数的T-半径和Borel半径 被引量:1

T-radii and Borel radii of meromorphic functions of finite positive order in the unit disc
原文传递
导出
摘要 作者证明了对任意正数λ,正整数q_1和q_2,记E_1={argz=θ_j|0≤θ_1<θ_2<…<θ_(q_1)<2π},E_2={argz=φ_j|0≤φ_1<φ_2<…<φ_(q_2)<2π},使得E_1∩E_2=。则(ⅰ)存在单位圆内的λ级亚纯函数f(z),恰以E_1∪E_2为其T-半径且恰以E_2为其Borel半径,(ⅱ)存在单位圆内级和下级均为λ的亚纯函数g(z),恰以E_1∪E_2为其Borel半径且恰以E_2为其T-半径。 Let λ be a positive number, q_1 and q_2 be positive integers. Assume that E_1= {argz=θ_j|0≤θ_1<θ_2<…<θ_(q_1)<2π} and E_2={argz=φ_j|0≤φ_1<φ_2<…<φ_(q_2)<2π} such that E_1∩E_2=. Then (ⅰ) there exists a meromorphic function f(z) of order λ in the unit disc, which takes the E_1∩E_2 as its T-radii and E_2 as its Borel radii, (ⅱ) there exists a meromorphic function g(z) of order and lower order λ in the unit disc, which takes the E_1∪E_2 as its Borel radii and E_2 as its T-radii.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第2期307-314,共8页 Journal of Sichuan University(Natural Science Edition)
关键词 亚纯函数 单位圆 BOREL半径 T-半径 meromorphic function unit disc Borel radius T-radius
  • 相关文献

参考文献4

二级参考文献6

  • 1杨乐,中国科学,1973年,4期,358页
  • 2Yang L,Sci China,1965年,8卷,7期,1556页
  • 3Zheng J. H.,Transcendental meromorphic functions with radiant distributed values, Scientia Sinica, Series A 2003, 33(6): 537-550 (in Chinese).
  • 4Yang L., Value distribution and its new research, Beijing: Scientific Press, 1982 (in Chinese).
  • 5Tsuji M., Potential theory in modern function theory, Tokyo: Maruzen Co. Ltd., 1959.
  • 6杨乐 张广厚.亚纯函数的波莱耳方向的分布.中国科学,1973,19(4):358-372.

共引文献9

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部