期刊文献+

元皇后问题回溯算法改进

Solving N-queens problem by using improved backtracking algorithm
原文传递
导出
摘要 回溯算法是解决N元皇后问题最有效的算法之一。在传统回溯算法的基础上,采用动态规划的思想,对算法进行了改进,改进后的算法大大降低了求解的复杂度和比较次数。文章还给出了改进算法的实现并通过理论分析和实验数据证明了算法的可行性。 Backtracking algorithm is one of the efficient methods to solve N-queens problem. Based on the solving N-queens problem by using backtracking algorithm, the thinking of the dynamic programming was introduced to improve the algorithm, and the complexity of the solution and comparative number was greatly reduced. At the same time, the concrete realization of the improved Non-recursive algorithm was implemented and the feasibility of this algorithm was proved through theoretical analysis and experimental data in the paper.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第2期339-342,共4页 Journal of Sichuan University(Natural Science Edition)
基金 四川省教育厅自然科学重点项目(072A014)
关键词 回溯算法 皇后问题 动态规划 backtracking-algorithm N-queens problem dynamic-programming
  • 相关文献

参考文献5

二级参考文献12

  • 1严蔚敏,数据结构(C语言版),1997年
  • 2徐士良,计算机常用算法(第2版),1995年
  • 3周培德,算法设计与分析,1992年
  • 4Erbas C,Sarkeshik S,Tanik M M.Different perspectives of the N-Queens problem[C]//ACM Annual Conference on Communications,1992:99-108.
  • 5Bozikovic M,Golub M,Budin L.Solving N-Queen problem using global parallel genetic algorithm[C]//Computer as a Tool:EUROCON 2003.The IEEE Region,2003,8:104-107.
  • 6Shonkwiler R,Ghannadian F,Alford C O.Parallel simulated annealing for the N-Queen problem[C]//Parallel Processing Symposium:Proceedings of Seventh International,13 -16 April,1993:690-694.
  • 7Hu Xiao-hui,Eberhart R C,Shi Yu-hui.Swarm intelligence for permutation optimization:a case study of n-queens problem[C]//Swarm Intelligence Symposium,SIS '03:Proceedings of the 2003 IEEE,24-26 April,2003:243-246.
  • 8ETSI Grid Plugtest[EB/OL].http://www.etsi.org/plugtests/History/2005 GRID.htm.
  • 9Solomon W G,Leonard D B.Backtrack programming[J].J ACM,1965,12(4):516-524.
  • 10ProActive GRID Java library[EB/OL].http://www-sop.inria.fr/oasis/ProActive/.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部