摘要
用全实加关联方法计算了Ni^(25+)离子1s^23s和1s^2np(n≤9)态的能量.通过引入价电子的有效核电荷,在类氢近似下,估算了对能量的高阶相对论修正和QED修正.计算了该离子1s^23s-1s^2np的跃迁能,波长和在三种规范下的振子强度.依据量子亏损理论,确定了Rydberg系列1s^2np的量子数亏损,据此可以实现对任意高激发态(n≥10)的能量的可靠预言;得到该离子从1s^23s态到电离阈附近高激发1s^2np态间的跃迁振子强度以及到相应连续态跃迁的振子强度密度.
The energies of 1s^23s and 1s^2np (n≤9) states for Ni^(25+) ion are calculated by using the full-core plus correlation method. The higher-order relativistic contribution and QED correction to the energy is estimated under a hydrogenic approximation. The transition energies, wavelengths and oscillator strengths for the 1s^23s 1s^2np transitions of this ion are calculated. The quantum defect of Rydberg series 1s^2np is determined according to the quantum defect theory. The energies of any highly excited states with n≥10 for this series can be reliably predicted. The discrete oscillator strengths for the transitions from 1s^23s state to highly excited states (n ≥10) and the oscillator strengths density corresponding to the bound-free transitions are obtained.
出处
《原子与分子物理学报》
CAS
CSCD
北大核心
2009年第1期15-19,共5页
Journal of Atomic and Molecular Physics
基金
国家自然科学基金(10774063)
关键词
Ni25+离子
跃迁能
波长
量子亏损
振子强度
Ni^(25+)ion
transition energy
wavelength
quantum defect
oscillator strength