期刊文献+

Cs(8S-4F)-Ar,H_2的碰撞能量转移 被引量:2

Collisional energy transfer in Cs(8S-4F)-Ar,H_2 collisions
下载PDF
导出
摘要 利用脉冲激光器双光子激发Cs-H_2(或Ar)样品池中的Cs原子至8S态,研究了Cs(8S)+M→Cs(4F)+M,(M=H_2,Ar)碰撞能量转移和Cs(4F)+H2→CsH+H反应过程,建立了二能级模型的速率方程组.在不同的Ar密度下测量直接8S→6P与敏化4F→5D积分荧光强度比,得到8S→4F转移速率系数5.3×10^(-12)cm^3s^(-1)和4F态的猝灭速率系数4.4×10^(-13)cm^3s^(-1).用相同的方法测得Cs-H_2中8S→4F的转移速率系数为1.0×10^(-9)cm^3s^(-1),而4F态的猝灭速率系数1.3×10^(-10)cm^3s^(-1)比Cs-Ar中大得多,它是反应与非反应速率系数之和.利用实验数据确定非反应速率系数为8.3×10^(-11)cm^3s^(-1),得出Cs(4F)与H2的反应截面为(2.0±0.8)×10^(-16)cm^2.与已有的其它实验结果比较,Cs各激发态与H_2的反应活动性顺序为7P>4F>6D>8S. A pulsed laser was used to excite the 8S state directly from ground state by two-photon absorption . We have investigated direct collisional energy transfer process Cs(8S) + M→Cs(4F) + M , where M=H_2, Ar,and the Cs(4F) + H_2→ CsH + H reaction under gas cell conditions. The resulting fluorescence included a direct component emitted in the decay of the 8S state and a sensitized component arising from the 4F state. At the different Ar densities,we have measured the relative time-integrated intensities of the components and fit a two-state rate equation model to obtain the rate coefficient (5. 3X 10^(-12)cm^3 s^(-1)) for the 8S→4F transfer and quenching (4. 4 × 10^(-13) cm^3 s^(-1)) of the 4F state. In the H_2 case, the total quenching rate coefficient (1. 3 X 10^(-10) cm^3 s^(-1)) corresponds to reaction and nonreactive energy transfer. Evidence suggests that the nonreactive energy transfer rate coefficient is 8. 3×10^(-11)cm^3 s^(-1). Hence we estimate the cross section (2.0±0. 8) × 10^(-16)cm^2 for reactive process Cs(4F) + H_2 →CsH + H . A comparison with previous results yields that the relative reactivity with H_2 for the studied atoms is in an order of Cs(7P)>Cs(4F)>Cs(6D)>Cs(8S).
出处 《原子与分子物理学报》 CAS CSCD 北大核心 2009年第1期97-100,共4页 Journal of Atomic and Molecular Physics
基金 国家自然科学基金(10664003) 新疆大学青年教师科研启动基金(QN070104)
关键词 激光光谱 碰撞能量转移 光化学反应 截面 Cs-H2系统 laser spectroscopy collisional energy transfer photochemical reaction cross section Cs-H_2 mixture
  • 相关文献

参考文献10

  • 1[1]Lou Y L,Lin K C,Liu D K,et al.Collisional deactivation for K in high-lying 2S and 2D states by H2[J].Phys.Rev.A,1992,46(7):3834
  • 2[2]Bililign S,Hattaway B C,Robinson T L,et al.Far-wing scattering studies on the reaction Li*(2p,3p)+H2→LiH(v″=1,2,J″)+H[J].J.Chem.Phys,2001,114(16):7052
  • 3[3]Vadla C,Horvatic V,Niemax K.Radiative transport and collisional transfer of excitation energy in Cs vapors mixed with Ar or He[J].Spectrochim.Acta B:Atom.Spectrosc.,2003,58:1235
  • 4[4]Fan L H,Chen J J,Liu Y Y,et al.Reaction of Rb(52D,72S) with H2[J].J.Phys.Chem.,1999,A103:1300
  • 5[5]Hattaway B C,Bililign S,Uhl L,et al.Energy transfer in Li(4p)+(Ar,H2,CH4) collisions[J].J.Chem.Phys.,2004,120(4):1739
  • 6[7]Kleiber P D,Wong T H,Bililign S.collisional energy transfer in Na(4p-3d)-He,H2 collisions[J].J.Chem.Phys.,1993,98(2):1101
  • 7[8]Caver V,L′Hermite J M,Rahmat G,et al.Cs(6D3/2)+H2→CsH+H reaction.Ⅳ.Rotationally resolved total cress section[J].J.Chem.Phys.,1999,110(7):3428
  • 8[9]L′Hermite J M,Rahmat G,Vetter R.The Cs(7P)+H2→CsH+H reaction Ⅱ.Rotationally resovlved total cross sections[J].J.Chem.Phys.,1991,95(5):3347
  • 9[10]Visticot J P,Ferray M,Cozingot J,et al.Investigation of various ways of forming CsH by irradiating a Cs+H2 mixture with laser light[J].J.Chem.Phys.,1983,79 (6):2839
  • 10[11]Theodosiou C E.Lifetimes of alkali-metal-atom Rydberg states[J].Phys.Rev.A,1984,30(6):2881

同被引文献23

  • 1Chang H C,Luo Y L,Lin K C.Collisional deactivation of K(7s^2S) and K(5d^2D) by H2[J].J.Chem.Phys.,1991,94(5):3529.
  • 2Flynn G W,Parmenter C S,Wodtke A M.Vibrational energy transfer[J].J.Phys.Chem.,1996,100:12817.
  • 3Hutchson J M,O′Hern R R,Stephenson T A,et al.Theoretical and experimental studies of collision-induced electronic energy transfer from v=0-3 of the E(Og^+) ion-pair state of Br2:collisions with He and Ar[J].J.Chem.Phys.,2008,128:184311.
  • 4Chandra P P,Stephenson T A.Franck-Condon effects in collision-induced electronic energy transfer:I2E,V=1,2+He,Ar[J].J.Chem.Phys.,2008,128:184311.
  • 5Polly R,Gruber D,Windholz L,et al.Collision-induced fluorescence of Cs2 the 3^1∑u^+→Χ~1∑g^+ system[J].Chem.Phys.Lett.,1996,249:174.
  • 6Jabbour Z J,Huennehens J.A study of the predissociation of NaK molecules in the 6^1∑^+ state by optical-optical double resonance spectroscopy[J].J.Chem.Phys.,1997,107(4):1094.
  • 7Chen X L,Chen H M,Li J,et al.Quantum interference effect on collisional energy transfer with in signal-triplet mixed states of Na2A^1∑u^+(v = 8)~B^3Πou v = 14[J].Chem.Phys.Lett.,2000,318:107.
  • 8Jeung G H,Spiegelmann F,Daudey J P,et all.Theoretical study of the lowest states of CsH and Cs2[J].J.Phys.B,1983,16;2659.
  • 9Hang X, Zhao J Z, Xing G Q, etal. The reaction of Cs(8^2P) and Cs(9^2P) with hydrogen molecules[J]. J. Chem. Phys., 1996, 104(4):1338.
  • 10Chang Y P, Hsiao M K, Liu D K, et al. Rotational and vibrational state distributions of Nail in the reactions of Na(4^2S,3^2D, and 6'S) with H2: insertion versus harpoon-type mechanism [ J ]. J. Chem. Phys. , 2008, 128:234309.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部