摘要
所谓数据发掘DataMining,就是从大量数据中发掘新的、有用模式的过程。把数据发掘用于入侵检测,可以从审计数据中发掘出具有系统活动特征的有用的模式,以指导、训练数据的收集和特征的选择和建立活动分类机制。为此,进行了基于DM的入侵检测模型的建立过程和所用算法的研究。
:Data mining is a process of identifying novel and potentially useful patterns in data.Using DM technique to intrusion detection,the useful patterns of system behavior features can be discovered in au-dit data.The discovered patterns can guide the audit data gathering and feature selection and build the behavior classified system.In this paper we study the process of building ID model and the algorithms that were used.
出处
《天津通信技术》
2001年第3期6-10,共5页
Tianjin Communications Technology
基金
华为科学基金资助项目
关键词
入侵检测
数据开采
审计数据
模型
Intrusion detection
Data mining
Audit data
Model