期刊文献+

Fibonacci字与Fine-Wilf定理的推广

Fibonacci Words and a Generalization of Fine-Wilf Theorem
下载PDF
导出
摘要 从任意两个Fibonacci字之间的公共前缀长度的研究出发,讨论了其与字的组合学中重要定理-Fine-W ilf定理的关系;用初等数论知识对Fine-W ilf定理进行了推广,得出:设u和v是A上的两个字,gcd(|u|,|v|)=1,若存在p、q使得up和vq有长度至少为|u|+|v|-k的公共前缀,则u和v中至多出现k个不同的字母. The length of common prefix between two arbitrary Fibonacci words has been investigated,and the relation between such words and Fine-Wilf Theorem has been discussed.After a generalization of Fine-Wilf Theorem by using elementary number theory,it is obtained: suppose u and v are two words over A,and gcd(|u|,|v|)=1;if there exist p and q that make up and vq have a common prefix with a length of at least |u|+|v|-k,then there are at most k distinct letters that can occur in u and v.
作者 刘云 郑琴琴
出处 《玉溪师范学院学报》 2009年第4期1-7,共7页 Journal of Yuxi Normal University
关键词 字的组合学 Fibonacci字 Fine-Wilf定理 公共前缀 combinatorics of words Fibonacci word Fine-Wilf Theorem common prefix
  • 相关文献

参考文献3

  • 1[1]Fine N.J.,Wilf.H.S..Uniqueness Theorem for Periodic Functions[J].Proc.Arn.Math Soc.,1965,(16):109-114.
  • 2[2]Lothaire,M..Combinatorics on Words[M].Addison-Wesley Publication Co.,1983.
  • 3[3]Lothaire,M..Algebraic Combinatorics on Words[M].Cambridge University Press,2002.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部