摘要
定义了两种代数结构反群和亚环,并对其结构进行了研究,得到:一个反群能诱导出一个交换群,这使得交换群的构作有了新的途径,也增进了对交换群结构的认识;再者亚环上可以造出结合律和分配律,从而又可开展一系列新的代数结构.
This article defined two types of algebraic structure,Opp-Group and Quasi-Ring,and analyzed their structure.The article found out that an Opp-Group can introduce an abelian group,which means a new method to producing abelian group while improving our understanding of the abelian group.Besides,the Quasi-Ring can lead to the associative law and distributive law.Consequently,various algebraic structures can be developed.
出处
《玉溪师范学院学报》
2008年第12期56-58,共3页
Journal of Yuxi Normal University
关键词
反群
亚环
诱导
代数结构
Opp-Group
Quasi-Ring
Introduction
Algebraic Structure