期刊文献+

Molecular dynamics simulations on the structures and properties of ε-CL-20-based PBXs ——Primary theoretical studies on HEDM formulation design 被引量:16

Molecular dynamics simulations on the structures and properties of ε-CL-20-based PBXs ——Primary theoretical studies on HEDM formulation design
原文传递
导出
摘要 Five polymer bonded explosives (PBXs) with the base explosive ε-CL-20 (hexanitrohexaazaisowurtzi- tane), the most important high energy density compound (HEDC), and five polymer binders (Estane 5703, GAP, HTPB, PEG, and F2314) were constructed. Molecular dynamics (MD) method was employed to investigate their binding energies (Ebind), compatibility, safety, mechanical properties, and energetic properties. The information and rules were reported for choosing better binders and guiding formula- tion design of high energy density material (HEDM). According to the calculated binding energies, the ordering of compatibility and stability of the five PBXs was predicted as ε-CL-20/PEG > ε-CL-20/ Estane5703 ≈ε-CL-20/GAP > ε-CL-20/HTPB > ε-CL-20/F2314. By pair correlation function g(r) analyses, hydrogen bonds and vdw are found to be the main interactions between the two components. The elasticity and isotropy of PBXs based ε-CL-20 can be obviously improved more than pure ε-CL-20 crystal. It is not by changing the molecular structures of ε-CL-20 for each binder to affect the sensitivity. The safety and energetic properties of these PBXs are mainly influenced by the thermal capability (C°p) and density (ρ) of binders, respectively. Five polymer bonded explosives(PBXs)with the base explosive epsilon-CL-20(hexanitrohexaazaisowurtzi-tane),the most important high energy density compound(HEDC),and five polymer binders(Estane 5703,GAP,HTPB,PEG,and F_(2314))were constructed.Molecular dynamics(MD)method was employed to investigate their binding energies(E_(bind))< compatibility,safety,mechanical properties,and energetic properties.The information and rules were reported for choosing better binders and guiding formulation design of high energy density material(HEDM).According to the calculated binding energies,the ordering of compatibility and stability of the five PBXs was predicted as epsilon-CL-20/PEG < epsilon-CL-20/ Estane5703 ≈ epsilon-CL-20/GAP < epsilon-CL-20/HTPB < epsilon-CL-20/F_(2314).By pair correlation function g(r)analyses,hydrogen bonds and vdw are found to be the main interactions between the two components.The elasticity and isotropy of PBXs based epsilon-CL-20 can be obviously improved more than pure epsilon-CL-20 crystal.It is not by changing the molecular structures of epsilon-CL-20 for each binder to affect the sensitivity.The safety and energetic properties of these PBXs are mainly influenced by the thermal capability(C_p^(deg))and density(p)of binders,respectively.
出处 《Science China Chemistry》 SCIE EI CAS 2007年第6期737-745,共9页 中国科学(化学英文版)
基金 Supported by the National Natural Science Foundation of China (Grant No. 10176012) the Important Foundation of China Academy of Engineering Physics (CAEP, 2004Z0503) and 973 Program of China
关键词 high energy density material (HEDM) HEXANITROHEXAAZAISOWURTZITANE (CL-20) polymer BONDED explosives (PBXs) molecular dynamics (MD) compatibility safety properties mechanical properties ENERGETIC PROPERTIES high energy density material(HEDM) hexanitrohexaazaisowurtzitane(CL-20) polymer bonded explosives(PBXs) molecular dynamics(MD) compatibility safety properties mechanical properties energetic properties
  • 相关文献

参考文献4

二级参考文献8

共引文献48

同被引文献114

引证文献16

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部