期刊文献+

Characterization for commutators of n-dimensional fractional Hardy operators 被引量:41

Characterization for commutators of n-dimensional fractional Hardy operators
原文传递
导出
摘要 In this paper,it was proved that the commutator H_(β,b)generated by an n-dimensional fractional Hardy operator and a locally integrable function b is bounded from L^(p1)(R^n)to L^(p2)(R^n)if and only if b is a CMO(R^n)function,where 1/p1-1/p2=β/n,1<p1<∞,0≤β<n.Furthermore, the characterization of H_(β,b)on the homogenous Herz space K_q^(α,p)(R^n)was obtained. In this paper, it was proved that the commutator Hβ,b generated by an n-dimensional fractional Hardy operator and a locally integrable function b is bounded from Lp1(Rn) to Lp2 (Rn) if and only if b is a C(M)O(Rn) function, where 1/p1 - 1/p2 = β/n, 1 < p1 <∞, 0 ≤β< n. Furthemore,the characterization of Hβ,b on the homogenous Herz space (K)qα,p(Rn) was obtained.
出处 《Science China Mathematics》 SCIE 2007年第10期1418-1426,共9页 中国科学:数学(英文版)
基金 This work was partially supported by the National Natural Science Foundation of China(Grant Nos.10571014,10371080) the Doctoral Programme Foundation of Institute of Higher Education of China(Grant No.20040027001)
关键词 n-dimensional FRACTIONAL Hardy operator commutator C(M)O function homogeneous HERZ space n-dimensional fractional Hardy operator commutator CMO function homogeneous Herz space
  • 相关文献

参考文献1

二级参考文献12

  • 1Rodrigo Ba?uelos,Jean Brossard.The area integral and its density for BMO and VMO functions[J]. Arkiv f?r matematik . 1993 (2)
  • 2Lu,S. Z.,Yang,D. C.The Littlewood-Paley function and φ-transform characterization of a new Hardy space HK2 associated with Herz space. Studia Mathematica . 1992
  • 3Dachun,Yang.The Real-Veriable Characterizations of Hardy SpacesHKp(Rγ), Chinese. Advaices in Math. (China) . 1995
  • 4Chen,Y. Z.,Lau,K. S.On an Equivalent Class of Norms for BMO. J. Austral. Math. Soc. (Series A) . 1989
  • 5Tao,Qian.On BMO Boundedness of a Class of Operators (Chinese). Journal of Mathematical Research and Exposition . 1987
  • 6Silei,Wang.Some Propoerities of Littlewood-Paley’sg-function (Chinese). Sci. Sinica (Ser. A) . 1985
  • 7Chen Y Z,Lau K S.On some new classes of Hardy spaces. Journal of Functional Analysis . 1989
  • 8Garcia-Cuerva J.Hardy spaces and Beurling algebras. Journal of the London Mathematical Society . 1989
  • 9Torchinsky A.The real variable methods in harmonic analysis. Communications on Pure and Applied Mathematics . 1986
  • 10Lu Shanchen,Tan Changmei,Yabuta, K.Littlewood-Paley Operators on the Generalized Lipschitz Spaces. .

共引文献49

同被引文献44

引证文献41

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部