期刊文献+

The genus distributions for a certain type of permutation graphs in orientable surfaces 被引量:1

The genus distributions for a certain type of permutation graphs in orientable surfaces
原文传递
导出
摘要 A circuit is a connected nontrivial 2-regular graph. A graph G is a permutation graph over a circuit C, if G can be obtained from two copies of C by joining these two copies with a perfect matching. In this paper, based on the joint tree method introduced by Liu, the genus polynomials for a certain type of permutation graphs in orientable surfaces are given. A circuit is a connected nontrivial 2-regular graph.A graph G is a permutation graph over a circuit C,if G can be obtained from two copies of C by joining these two copies with a perfect matching.In this paper,based on the joint tree method introduced by Liu,the genus polynomials for a certain type of permutation graphs in orientable surfaces are given.
出处 《Science China Mathematics》 SCIE 2007年第12期1748-1754,共7页 中国科学:数学(英文版)
基金 This work was supported by Beijing Jiaotong University Fund (Grant No.2004SM054) the National Natural Science Foundation of China (Grant No.10571013)
关键词 graph GENUS distribution genus SURFACES graph genus distribution genus surfaces
  • 相关文献

参考文献14

  • 1[1]Thomassen C.The graph genus problem is NP-complete.J Assoc Comput Mach Algorithms,10:568-576(1989)
  • 2[2]McGeoch L A.Algorithms for two graph problems:computing maximum genus imbedding and the twoserver problem.Ph D Thesis,Computer Science Dept Carnegie Mellon University,PA,1987
  • 3[3]Xoung N H.How to determine the maximum genus of graph.J Combin Theory,26:217-225 (1979)
  • 4[4]Chen J R,Gross J L,Rieper R G.Overlap matrices and total imbedding distributions.Discrete Math,128:73-94 (1994)
  • 5[5]Furst M L,Gross G L,Statman R.Genus distributions for two classes of graphs.J Combin Theory,46:22-36 (1989)
  • 6[6]Gross J L,Robbins D P,Tucker T W.Genus distributions for bouquets of circles.J Combin Theory,47:292-306 (1989)
  • 7[7]Tesar E H.Genus distribution for Ringel ladders.Discrete Math,216:235-252 (2000)
  • 8[8]Kwak J H,Shim S H.Total embedding distributions for bouquets of circles.Discrete Math,248:93-108(2002)
  • 9[9]Kwak J H,Lee K J.Genus polynomial of dipoles.Kyungpook Math J,33:115-125 (1993)
  • 10[10]Piazza B L,Ringeisen R D.Connectivity of generalized prisms over G.Discrete Appl Math,30:229-233(1991)

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部