摘要
对某些d,若Q(d^(1/2))是Euclid域,则在其对应的Euclid整环■(d^(1/2))中算术基本定理成立。利用此来证明不定方程x2+7=4y3有惟一正整数x=5,y=2。
For somed,if Q(d^(1/2)) is Euclidean field,inaccording Euclidean domain ■(d^(1/2)),arithmetical funda-mental theoremis carried out.Mainly usingthe method todiscuss the integer solution of diophantine equationx2+7 =4y3,and we will get the unique integer solutionthatx=5,y=2.
出处
《长春工程学院学报(自然科学版)》
2007年第1期84-85,共2页
Journal of Changchun Institute of Technology:Natural Sciences Edition
基金
重庆市教委科研基金(No.010204)