期刊文献+

基于RBF神经网络算法的被动红外探测器设计及单片机实现

RBF Neural Network Arithmetic of Passive Infrared Detector and Realization by MCU
下载PDF
导出
摘要 传统被动红外探测器容易受到环境温度,环境光线强度影响,误报率高。对此提出采用RBF神经网络算法来融合环境温度,以光线强度参数来改善对传感器的非线性补偿效果方法,并提出单片机实现方式。实验数据表明该方法能够显著提高探测器的环境适应能力,具有很强的实用性。 The origin passive infrared detectors is easily jammed by factors such as environmental temperature and environmental light intensity.This paper provides a method of improving the performance of passive infrared detectors by data fusion and non-linearity compensation which is based on Radial Basis Function(RBF) neural network arithmetic.The realization by MCU is presented too.The result of experiment data shows that this way can markedly improve the detector's performance and is proved to be workable.
出处 《广东水利电力职业技术学院学报》 2007年第3期38-39,共2页 Journal of Guangdong Polytechnic of Water Resources and Electric Engineering
关键词 RBF神经网络 被动红外探测器 单片机 RBF neural network passive infrared detectors single chip microprocessor
  • 相关文献

参考文献1

  • 1[2]T.H GUO,J.NURRE.Sensor failure detection and recovery by neural networks[C] in:Proceeding of the International Joint Conference on Neural Networks,1991.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部