期刊文献+

基于遗传算法的显影速率参数确定

Determination of Development Rate Parameters Based on Genetic Algorithm
下载PDF
导出
摘要 为了更精确地确定显影速率参数,采用基于遗传算法的最小二乘法对显影速率进行拟合,并与Gauss-Newton迭代法进行了比较。结果显示,基于遗传算法的拟合效果更佳,具有较强的鲁棒性,可以用于显影速率参数的确定。该拟合可以为显影模拟、曝光条件的优化提供更精确的参数。 The development rate was simulated using a least square method based on the genetic algorithm to accurately determine the parameters for development rate and it was compared with one by the Gauss-New ton iterative method. The results indicate the simulated result by the genetic algorithm method is more accurate than one by the Gauss-Newton iterative method and it has the stronger robust, so it can be used to determine the development rate parameters. This work can provide the precise parameters for development simulation and the optimization of exposure condition.
出处 《微细加工技术》 EI 2007年第3期6-8,17,共4页 Microfabrication Technology
基金 国家自然科学基金重大研究计划资助项目(90307003) 山东省自然科学基金资助项目(Y2003G03) 国家自然科学基金资助项目(10572078)
关键词 显影速率 最小二乘法 遗传算法 Gauss-Newton迭代法 development rate least square genetic algorithm Gauss-Newton iterative method
  • 相关文献

参考文献12

  • 1[1]Dill F H,Horinberger, Hauge P S, et al.Characterization of positive photoresist[J].IEEE Trans on Electron Devices, 1975,ED-22(7):445-452.
  • 2[2]Dill F H, Neureuther A R, Tuttle J A, et al.Modeling projection printing of positive photoresists[J]. IEEE Trans on Electron Devices, 1975,ED-22(7):456-464.
  • 3[3]Mack C A,Arthur G.Notch model for photoresist dissolution[J].Electrochemical and Solid-State Letters,1998,1(2):86-88.
  • 4[4]Kim D J,Oldham W G,Neureuther A R.Development of positive photoresist[J].IEEE Trans on Electron Devices, 1984,ED-31(12):1730-1735.
  • 5[5]Mack C A. Development of positive photoresists[J].Journal of the Electrochemical Society,1987,134(1):148-152.
  • 6[6]钟而杰,黄廷祝.数值分析[M].北京:高等教育出版社,2004.
  • 7周明华,汪国昭.基于遗传算法的B样条曲线和Bézier曲线的最小二乘拟合[J].计算机研究与发展,2005,42(1):134-143. 被引量:28
  • 8[8]Yoshimoto F,Moriyama M.Data fitting with a splinefunction automatic knot placement by a genetic algorithm[J]. Trans on Information Proceeding Society of Japan,1998, 39(9):2572-2580.
  • 9[9]Yoshimoto F, Harda T, Yoshimoto Y. Data fitting with a spline using a real-coded genetic algorithm[J].Computer-Aided Design,2003,35(8):751-760.
  • 10[10]Azariadisa P N, Nearchoua A C, Aspragathosa N A. An evolutionary algorithm for generating planar development of arbitrarily curved surfaces[J]. Computers in Industry,2002, 47(3):357-368.

二级参考文献20

  • 1周明 孙树栋.遗传算法原理及引用[M].北京:国防工业出版社,1999..
  • 2A. Markus, G. Renner, J. Vdncza. Genetic algorithms in free form curve design. Mathematical Methods for Curves and Surfaces, Nashivilte, 1995.
  • 3P. N. Azariadisa, A. C. Nearchoua, N. A. Aspragathosa. An evolutionary algorithm for generating planar developments of arbitrarily curved surfaces. Computers in Industry, 2002, 47(3):357--368.
  • 4M. Manela, N. Thornhill, J. A. Campbell. Fitting spline functions to noisy data using a genetic algorithm. The 5th Int'l Conf. on Cenetic Algorithms, Urbana-Champaign, IL, USA,1993.
  • 5Y. H. Chen, C. Y. Liu. Quadric surface extraction using genetic algorithms. Computer-Aided Design, 1999, 31(1): 101- 10.
  • 6J. Lampinen, J. T. Alander. Shape design and shape optimization by genetic algorithms. Advances in Computational Mechanics with High Performance Computing. Edinburgh, Scotland, 1998.
  • 7J. Lampinen. Cam shape optimization by genetic algorithm.Computer-Aided Design, 2003, 35(8) : 727-737.
  • 8J. M. Lindstrom. Bayesian estimation of free-knot spline using reversible jumps. Computational Statistic & Data Analysis, 2002,41(2) : 255--269.
  • 9M. Grossman. Parametric curve fitting. The Computer Journal,1971, 17(2): 169-172.
  • 10E. T. Y. Lee. Choosing nodes in parametric curve interpolation.Computer-Aided Design, 1989, 21(6): 363--370.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部