期刊文献+

Cu互连应力迁移失效有限元分析

Finite Element Analysis of Stress Migration Failure in Cu Interconnects
下载PDF
导出
摘要 为研究铜互连系统中各因素对残余应力及应力迁移失效的影响,建立了三维有限元模型,用ANSYS软件分析计算了Cu互连系统中的残余应力分布情况,并对比分析了不同结构、位置及层间介质材料的互连系统中的残余应力及应力梯度。残余应力在金属线中通孔正下方M2互连顶端最小,在通孔内部达到极大值,应力梯度在Cu M2互连顶端通孔拐角底部位置达到极大值。双通孔结构相对单通孔结构应力分布更为均匀,应力梯度更小。结果表明,空洞最易形成位置由应力和应力梯度的大小共同决定,应力极大值随通孔直径和层间介质介电常数的减小而下降,随线宽和重叠区面积的减小而上升。应力梯度随通孔直径、层间介质介电常数和重叠区面积的减小而下降,随线宽减小而上升。 Residual stress distribution in Cu interconnects was analyzed using three-dimension finite element model to study the structure effect of stress migration failure.Different interconnect structures including various via diameter,line width,overlap area,and dielectric material were investigated to analyze structural effects on residual stress and stress gradient.Stress reaches the maximum value inside the via,and reaches the minimum value at the top of M2 underneath the via.Stress gradient achieves the peak value at the top surface of M2 under the corner of the via.Stress gradient was smaller and stress distribution was more uniform in Cu interconnect with double-via structure.The results indicate that voiding position is affected by both the stress and the stress gradient.Residual stress decreases as the via diameter or the dielectric constant of ILD decreasing,and increases as the line width or the overlap area increasing. Stress gradient decreases as the via diameter,the dielectric constant of ILD or the overlap area decreasing,and increase as the line width increasing.
出处 《微细加工技术》 2007年第6期52-56,共5页 Microfabrication Technology
基金 西安-应用材料创新基金资助项目(XA-AM-200501)
关键词 CU互连 应力迁移 残余应力 有限元分析 Cu interconnects stress migration residual stress finite element analysis
  • 相关文献

参考文献15

  • 1[1]Gan Z H,Shao W.Experimental and numerical studies of stress migration in Cu interconnects embedded in different dielectrics[J].AIP Conf Proc,2006,817:269-274.
  • 2王阳元,康晋锋.超深亚微米集成电路中的互连问题——低k介质与Cu的互连集成技术[J].Journal of Semiconductors,2002,23(11):1121-1134. 被引量:44
  • 3[3]Ogawa E T,Mepherson J W,et al.Stress induced voiding ander vias connected to wide Cu metal leads[J].Annu Proc Reliab Phys Symp,2002,31:312-321.
  • 4[4]Dauksher W,Marcoux P,Castleman G.A methodology for the calculation of stress migration in die-level interconnects[J].Microelectronies ReliabiGty,2006,46:616-625.
  • 5[5]Aoyagi Minoru.Change in electrical resistance eaused by stress-induced migration[J].J Vac Sci Technol B,2006,24:250-254.
  • 6[6]Li Baozhen,Sullivan T D.Reliability challenges for copper interconnects[J].Micro lectronies Reli bility,2004,44:365-380.
  • 7[7]Orain S Fuchsmann.Reliability issues in Cu/low-k stru ctures regarding the initiation of stress-voiding or crack failure[J].Mieroelectronie Engineering,2006,83:2402-2406.
  • 8[8]Paik Jong.Min.Effect oflow-k dielectric on stress and str essindueed damage in Cu interconnects[J].Mieroelectronie Engineering,2004,71:348-357.
  • 9[9]Thompson C V.Effects of mechanical properties on the cir cuitlevel reliability of Cu/low-k metallization[J].AIP Conf Proc,2006,817:231-243.
  • 10[10]Gan Zhenghao,Shao Wei.The influence of temperatureand dielectric materials on stress induced voiding in Cu dual damasctrne interconnects[J].Thin Solid Films,2006,504:161-165.

二级参考文献5

  • 1Yu Y,et al.Dielectric property and microstructure of a porous polymer material with ultralow dielectric constant[].Applied Physics Letters.1999
  • 2Plant D V,Kirk A G.Optical interconnects at the chip and board level : challenges and solutions[].Proceedings of Tricomm.2000
  • 3Davis J A,Venkatesan R,Kaloyeros A,et al.Interconnect limits on gigascale integration (GSI ) in the 21st century[].Proceedings of Tricomm.2001
  • 4Wu Z C,et al.Electrical reliability issues of integrating thin Ta and TaN barriers with Cu and low-k dielectric[].Journal of the Electrochemical Society.1999
  • 5Chang M F,Roychowdhury V P,Zhang L,et al.RF wireless interconnect for inter-and intra-chip communications[].Proceedings of Tricomm.2001

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部